Numerical study of hydrothermal characteristics in nano fluid using KKL model with Brownian motion

Document Type : Article

Authors

1 Department of Applied Mathematics & Statistics, Institute of Space Technology, Islamabad, 44000, Pakistan.

2 Department of Applied Mathematics & Statistics, Institute of Space Technology, Islamabad, 44000, Pakistan

Abstract

Finite element method (FEM) is used to study the hydrothermal characteristics of the nano-fluid subjected to Brownian motion. For effective thermal conductivity and effective, viscosity Koo-Kleinstreuer-Li (KKL) model is used. It is observed that the dispersion of nano-particles in Newtonian liquid causes a significant increase in the effective thermal conductivity. This results based on the dispersion of nano-particles help engineers to design an efficient thermal system. A significant role of viscous dissipation on diffusion of momentum of wall into the fluid is observed. Therefore, dissipations effects cannot be ignored while designing thermal systems. The buoyant force is responsible for the effect of electromagnetic thermal radiations on the velocity of fluid convectively heated surface enhances the rate of generation of entropy. This study also recommends that nano-fluids are the best coolants as compare to the base fluids. Imposition of magnetic field causes more entropy generation.

Keywords

Main Subjects


References:
1. Einstein, A. "Eine neue Bestimmung der Molekuldimensionen", Ann. d. Phys., 19, pp. 289-306 (1906).
2. Brinkman, H.C. "The viscosity of concentrated suspensions and solutions", J. Chem. Phys., 20(4), pp. 571-581 (1952).
3. Batchelor G.K. "The effect of Brownian motion on the bulk stress in a suspension of spherical particles", J. Fluid Mech., 83(1), p. 97 (1977).
4. Mori, Y. and Ototake, N. "On the viscosity of suspensions", Chem. Eng., 20(9), pp. 488-494 (1956).
5. Wang, X., Xu, X., and Choi, S.U.S. "Thermal conductivity of nanoparticle-fluid mixture", J. Thermophys. Heat Transfer, 13(4), pp. 474-480 (1999).
6. Avsec, J. and Oblak, M. "The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics", Int. J. Heat Mass Transfer, 50(21-22), pp. 4331- 4341 (2007).
7. Masoumi, N. Sohrabi, N., and Behzadmehr, A. "A new model for calculating the effective viscosity of nanofluids", J. Phys. D Appl. Phys., 42(5), p. 55501 (2009).
8. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford, Clarendon (1891).
9. Hamilton, R.L. and Crosser, O.K. "Thermal conductivity of heterogeneous two-component systems", I & EC Fundamentals, 1, pp. 182-191 (1962).
10. Jeffrey, D.J. "Conduction through a random suspension of spheres", Proceedings of Royal Society, 335, pp. 355-367 (1973).
11. Bruggeman, D.A.G. "Berechnung verschiedener physikalischer konstanten von heterogenen substanzen", I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen. Annalen der Physik. Leipzig, 24, pp. 636-679 (1935).
12. Lu, S.Y. and Liu, H.C. "Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity", J. of Applied Physics, 79(9), pp. 6761-6769 (1996).
13. Davis, R.H. "The effective thermal conductivity of a composite material with spherical inclusions", Int. J. of Thermophysics, 7, pp. 609-620 (1986).
14. Sastry, N.N., Bhunia, V., Sundararajan, T., and Das, S.K. "Predicting the effective thermal conductivity of carbon nanotube based nanofluids", Nanotechnology, 19, p. 055704 (2008).
15. Syam Sunder, L.S., Singh, M.K., and Sousa, C.M.A. "Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications", Int. Commun. In Heat and Mass Transfer, 44, pp. 7-14 (2013).
16. Xuan, Y., Li, Q., and Hu, W. "Aggregation structure and thermal conductivity of nanofluids", J. of American Institute of Chemical Engineers (AIChE), 49(4), pp. 1038-1043 (2003).
17. Jang, S.P. and Choi, S.U.S. "Role of Brownian motion in the enhanced thermal conductivity of nanofluids", Appli. Phy. Letters, 84, pp. 4316-4318 (2004).
18. Kumar, D.H., Patel, H.E., Kumar, V.R.R., Sundararajan, T., Pradeep, T., and Das, S.K. "Model for heat conduction in nanofluids", Physical Review Letters, 93(14), pp. 144301-1-144301-4 (2004).
19. Ko , J. and Kleinstreuer, C. "A new thermal conductivity model for nanofluids", J. of Nanoparticle Research, 6(6), pp. 577-588 (2004).
20. Bhattacharya, P., Phelan, P.E., and Prasher, R. "Brownian-motion-based convective conductive model for the effective thermal conductivity of nanofluids", J. of Heat Transfer, 128, pp. 588-595 (2006).
21. Xu, J., Yu, B., Zou, M., and Xu, P. "A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles", J. of Appli. Phy., 39, pp. 4486-4490 (2006).
22. Yu-Hua, L., Wei, Q., and Ian-Chao, F. "Temperature dependence of thermal conductivity of nanofluids", Chinese Physics Letters, 25(9), p. 3319 (2008).
23. Shukla, R.K. and Dhir, V.K. "Effect of Brownian motion on thermal conductivity of nanofluids", J. of Heat Transfer, 130(4), pp. 042406-1-042406-13 (2008).
24. Yang, B. "Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids)", J. of Heat Transfer, 130(4), pp. 042408- 1- 042408-5 (2008).
25. Sheikholeslami, M. "KKL correlation for simulation of nanofluid flow and heat transfer inapermeable channel", Physics Letters A., 1(137), pp. 1-9 (2014).
26. Sheikholeslami, M., Jafaryar, M., and Li, Z. "Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators", J. of Molecular Liquids, 263, pp. 489-500 (2017).
27. Sheikholeslami, M. "Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces", J. of Molecular Liquids, 266, pp. 495-503 (2018).
28. Sheikholeslami, M. "Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using nanoparticles", J. of Molecular Liquids, 263, pp. 303-315 (2018).
29. Sheikholeslami, M. and Rokni, H.B. "CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of Nonequilibrium model", J. of Molecular Liquids, 254, pp. 446-462 (2018).
30. Sheikholeslami, M., Shehzad, S.A., Li, Z., and Shafee, A. "Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law", Int. J. of Heat and Mass Transfer, 127, pp. 614-622 (2018).
31. Sheikholeslami, M., Li, Z., and Shafee, A. "Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system", Int. J. of Heat and Mass Transfer, 127, pp. 665-674 (2018).
32. Sheikholeslami, M. Jafaryar, M., Saleem, S., Li, Z., Shafee, A., and Jiang, Y. "Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators", Int. J. of Heat and Mass Transfer, 126, pp. 156-163 (2018).
33. Sheikholeslami, M., Shehzad, S.A., and Li, Z. "Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces", Int. J. of Heat and Mass Transfer, 125, pp. 375-386 (2018).
34. Sheikholeslami, M., Darzi, M., and Li, Z. "Experimental investigation for entropy generation and energy loss of nano-refrigerant condensation process", Int. J. of Heat and Mass Transfer, 125, pp. 1087-1095 (2018).
35. Sheikholeslami, M., Darzi, M., and Sadoughi, M.K. "Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure", Int. J. of Heat and Mass Transfer, 122, pp. 643-650 (2018).
36. Sheikholeslami, M., Shehzad, S.A., Abbasi, F.M., and Li, Z. "Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle", Comput. Methods Appl. Mech. Engrg., 338, pp. 491-505 (2018).
37. Sheikholeslami, M. "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion", J. of Molecular Liquids, 249, pp. 921-929 (2018).
38. Sheikholeslami, M., Li, Z., and Shafee, A. "Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system", Int. J. of Heat and Mass Transfer, 127, pp. 665-674 (2018).
39. Malvandi, A., Safaei, M.R., Affash, M.H.K., and Ganji, D.D. "MHD mixed convection in a vertical annulus filled with Al2O3-water nanofluid considering nanoparticle migration", J. of Magnetism and Magnetic Materials, 382, pp. 296-306 (2015).
40. Domairry, G. and Hatami, M. "Squeezing Cu-water nanofluid flow analysis between parallel plates by DTM-Pade method", J. of Molecular Liquids, 193, pp. 37-44 (2014).
41. Alinia, M., Ganji, D.D., and Gorji-Bandpy, M. "Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using twophase mixture model", Int. Commun. in Heat and Mass Transfer, 38, pp. 1428-1435 (2011).
42. Hatami, M., Sheikholeslami, M., Hosseini, M., and Domiri Ganji, D. "Analytical investigation of MHD nano fluid flow in non-parallel walls", J. of Molecular Liquids, 194, pp. 251-259 (2014).
43. Ahmadi, A.R., Zahmatkesh, A., Hatami, M., and Ganji, D.D. "A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching at plate", Powder Technology, 258, pp. 125-133 (2014).
44. Malvandi, A., Hedayati, F., and Domairry, G. "Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/ absorption", J. of Thermodynamics, 2013, pp. 1-12 (2013).
45. Khorasanizadeh, H., Amani, J., and Nikfar, M. "Numerical investigation of Cu-water nanofluid natural convection and entropy generation within a cavity with an embedded conductive baffle", Scientia Iranica, 19(6), pp. 1996-2003 (2012).
46. Sheikholeslami, M. and Gangi, D.D. "MHD flow in a permeable channel filled with nanofluid", Scientia Iranica, 21(1), pp. 203-212 (2014).
47. Hosseinzadeh, Kh., Afsharpanah, F., Zamani, S., Gholinia, M., and Ganji, D.D. "A numerical investigation on ethylene glycoltitanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption", Case Studies in Thermal Engineering, 12, pp. 228- 236 (2018).
48. Ghadikolaei, S.S., Hosseinzadeh, Kh., Ganji, D.D., and Jafari, B. "Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet", Case Studies in Thermal Engineering, 12, pp. 176-187 (2018).
49. Amiri, A.J., Ardahaie, S.S., Amooie, A., Hosseinzadeh, Kh., and Ganji, D.D. "Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial", Informatics in Medicine Unlocked, 10, pp. 71-81 (2017).
50. Ghadikolaei, S.S., Hosseinzadeh, Kh., Yassari, M., Sadeghi, H., and Ganji, D. D. "Boundary layer analysis of micropolar dusty fluid with TiO2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet", Journal of Molecular Liquids, 244, pp. 374-389 (2017).
51. Ghadikolaei, S.S., Hosseinzadeh, Kh., Hatami, M., and Ganji, D.D. "MHD boundary layer analysis for micropolar dusty fluid containing hybrid nanoparticles (Cu, Al2O3) over a porous medium", Journal of Molecular Liquids, 268, pp. 813-823 (2018).
52. Ghadikolaei, S.S., Hosseinzadeh, Kh., and Ganji, D.D. "Investigation on three dimensional squeezing flow of mixture base 
uid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4 - Ag) dependent on shape factor", Journal of Molecular Liquids, 262, pp. 376-388 (2018).
53. Ghadikolaei, S.S., Hosseinzadeh, Kh., Ganji, D.D., and Hatami, M. "Fe3O4 -(CH2OH)2 nanofluid analysis in a porous medium under MHD radiative boundary layer and molecular dusty fluid", Journal of Molecular Liquids, 258, pp. 172-185 (2018).
54. Ghadikolaei, S.S., Hosseinzadeh, Kh., Hatami, M., Ganji, D.D., and Armin, M. "Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation", Journal of Molecular Liquids, 263, pp. 10-21 (2018).
55. Ghadikolaei, S.S., Hosseinzadeh, K.H., and Ganji, D.D. "MHD raviative boundary layer analysis of micropolar dusty  fluid with graphene oxide (Go)-engine oil nanoparticles in a porous medium over a stretching sheet with joule heating effect", Powder Technology, 338, pp. 425-437 (2018).
56. Hosseinzadeh, Kh., Amiri, A.J., Ardahaie, S.S., and Ganji, D.D. "Effect of variable Lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method", Case Studies in Thermal Engineering, 10, pp. 595-610 (2017).
57. Sheikholeslami, M., Hatami, M., and Domairry, G. "Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field", J. of the Taiwan Institute of Chemical Engineers, 46, pp. 43-50 (2015).
58. Bejan, A. "Entropy generation minimization, the new thermodynamics of finite-size devices and finite-time processes", J. Appl. Phys., 79, pp. 1191-1218 (1996).
59. Bhatti, M.M., Rashidi, M.M., and Pop, I. "Entropy generation with nonlinear heat and mass transfer on MHD boundary layer over a moving surface using SLM", Nonlinear Eng., 6, pp. 43-52 (2017).
60. Armaghania, T., Kasaeipoora, A., Alavib, N., and Rashidic, M.M. "Numerical investigation of wateralumina nanofluid natural convection heat transfer and entropy generation in a based L-shaped cavity", J. Mol. Liq., 223, pp. 243-251 (2016).
61. Bianco, V., Nardini, S., and Manca, O. "Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes", Nanoscale Research Letters, 6, p. 252 (2011).
62. Butt, A.S. and Ali, A.A. "Computational study of entropy generation in magnetohy-drodynamic flow and heat transfer over an unsteady stretching permeable sheet", The European Physical J. Plus, 129, pp. 1-13 (2014).
63. Das, S., Chakraborty, S., Jana, R.N., and Makinde, O.D. "Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition", Appl. Math. Mech. -Engl. Ed., 36(12), pp. 1593-1610 (2015).
64. Abolbashari, M.H., Freidoonimehr, N., Nazari, F., and Rashidi, M.M. "Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid", Powder Technology, 267, pp. 256-267 (2014).