Optimal design of fractional-order digital integrators:An evolutionary approach

Document Type : Article


1 Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India

2 Department of Electronics and Telecomm Engineering, National Institute of Technology, Raipur, Chhattisgarh, India


This paper presents an optimal approach to design Fractional-Order Digital Integrators (FODIs) using a metaheuristic technique, called Hybrid Flower Pollination Algorithm (HFPA). HFPA is a hybrid approach which combines the exploitation and exploration capabilities of two di erent evolutionary optimization algorithms, namely, Particle Swarm Optimization (PSO) and Flower Pollination Algorithm (FPA). The proposed HFPA based designs are compared with the designs based on Real Coded Genetic Algorithm (RGA), PSO, Di erential Evolution (DE), and FPA. Simulation results demonstrate that HFPA based FODIs of all the di erent orders consistently achieve the best magnitude responses. The proposed technique yields FODIs which surpass all the designs based on both classical and evolutionary optimization approaches reported in recent literature.


Main Subjects

1. Oldham, K.B. and Spanier, J. The Fractional Calculus,
Academic Press, New York (1974).
2. West, B.J., Bologna, M., and Grigolini, P. Physics of
Fractal Operators, Springer Verlag, New York (2003).
3. Wang, F. and Ma, X. \Fractional order buck-boost
converter in CCM: modelling, analysis and simulations",
Int. J. Electron., 101, pp. 1671-1682 (2014).
4. Sharma, R., Gaur, P., and Mittal, A.P. \Performance
analysis of two-degree of freedom fractional order PID
controllers for robotic manipulator with payload", ISA
Trans., 58, pp. 279-291 (2015).
5. Ferdi, Y. \Computation of fractional order derivative
and integral via power series expansion and signal
modelling", Nonlinear Dyn., 46(1-2), pp. 1-15 (2006).
6. Chen, Y.Q., Vinagre, B.M., and Podlubny, I. \Continued
fraction expansion approaches to discretizing fractional
order derivatives-an expository review", Nonlinear
Dyn., 38(1-4), pp. 155-170 (2004).
7. Visweswaran, G.S., Varshney, P., and Gupta, M. \New
approach to realize fractional power in z-domain at low
frequency", IEEE Trans. Circuits Syst. II, 58(3), pp.
179-183 (2011).
8. Gupta, M., Varshney, P., and Visweswaran, G.S.
\Digital fractional-order di erentiator and integrator
models based on rst-order and higher order operators",
Int. J. Circuit Theor. Appl., 39(5), pp. 461-474
9. Valerio, D. and Costa, J.S. \Time-domain implementation
of fractional order controllers", IEE Proc. Control
Theor. Appl., 152(5), pp. 539-552 (2005).
10. Vinagre, B.M., Podlubny, I., and Hernandez, A. \Some
approximations of fractional order operators used in
control theory and applications", Fract. Calculus Appl.
Anal., 3(3), pp. 231-248 (2000).
11. Vinagre, B.M., Chen, Y.Q., and Petras, I. \Two direct
tustin discretization methods for fractional-order
di erentiator/integrator", J. Frankl. Inst., 340(5), pp.
349-362 (2003).
12. Tseng, C.C. \Design of FIR and IIR fractional order
Simpson digital integrators", Signal Process., 87(5),
pp. 1045-1057 (2007).
13. Chen, Y.Q. and Moore, K.L. \Discretization schemes
for fractional-order di erentiators and integrators",
IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl.,
49(3), pp. 363-367 (2002).
14. Chen, Y.Q. and Vinagre, B.M., \A new IIR-type
digital fractional order di erentiator", Signal Process.,
83(11), pp. 2359-2365 (2003).
15. Barbosa, R.S., Machado, J.A.T., and Silva, M.F.
\Time domain design of fractional di erintegrators
using least-squares", Signal Process., 86(10), pp. 2567-
2581 (2006).
16. Maione, G. \Thiele's continued fractions in digital implementation
of noninteger di erintegrators", Signal,
Image Video Process., 6(3), pp. 401-410 (2012).
17. Romero, M., de Madrid, A.P., Manoso, C., and
Vinagre, B.M. \IIR approximations to the fractional
di erentiator/integrator using Chebyshev polynomials
theory", ISA Trans., 52(4), pp. 461-468 (2013).
18. Krishna, B.T. \Studies of fractional order di erentiators
and integrators: a survey", Signal Process., 91(3),
pp. 386-426 (2011).
19. Gupta, M. and Yadav, R. \Design of improved fractional
order integrators using indirect discretization
method", Int. J. Comput. Appl., 59(14), pp. 19-24
20. Yadav, R. and Gupta, M. \Approximations of higherorder
fractional di erentiators and integrators using indirect
discretization", Turkish J. Electr. Eng. Comput.
Sci., 23, pp. 666-680 (2015).
21. Gupta, M. and Yadav, R. \Optimization of integerorder
integrators for deriving improved models of
their fractional counterparts", J. Optim., 2013, article
ID. 142390, pp. 1-11 (2013).
3626 S. Mahata et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3604{3627
22. Yadav, R. and Gupta, M. \New improved fractional
order integrators using PSO optimization", Int. J.
Electron., 102(3), pp. 490-499 (2015).
23. Yang, X.S. Engineering Optimization an Introduction
with Metaheuristic Applications, In John Wiley &
Sons, Inc., Hoboken, New Jersey (2010).
24. Kalinli, A. and Karaboga, N. \Arti cial immune algorithm
for IIR lter design", J. Eng. Appl. Artif. Intell.,
18(5), pp. 919-929 (2005).
25. Karaboga, N. \Digital IIR lter design using di erential
evolution algorithm", EURASIP J. Appl. Signal
Process., (8), pp. 1269-1276 (2005).
26. Ling, S.H., Iu, H.H.C., Leung, F.H.F., and Chan, K.Y.
\Improved hybrid particle swarm optimized wavelet
neural network for modeling the development of
dispensing for electronic packaging", IEEE Trans. Ind.
Electron., 55(9), pp. 3447-3460 (2008).
27. Biswal, B., Dash, P.K., and Panigrahi, B.K. \Power
quality disturbance classi cation using fuzzy C-means
algorithm and adaptive particle swarm optimization",
IEEE Trans. Ind. Electron., 56(1), pp. 212-220 (2009).
28. Fan, Z., Liu, J., Sorensen, T., and Wang, P. \Improved
di erential evolution based on stochastic ranking for
robust layout synthesis of MEMS components", IEEE
Trans. Ind. Electron., 56(4), pp. 937-948 (2009).
29. Abdel-Raouf, O., Abdel-Baset, M., and El-henawy, I.
\A new hybrid
ower pollination algorithm for solving
constrained global optimization problems", Int. J.
Appl. Op. Res., 4(2), pp. 1-13 (2014).
30. Yang, X.S. \Flower pollination algorithm for global
optimization", In: Unconventional Comput. Natural
Comput., Lecture Notes in Computer Science, 7445,
pp. 240-249 (2012).
31. Kennedy, J. and Eberhart, R. \Particle swarm optimization",
4th IEEE Int. Conf. Neural Netw., Perth,
Australia, 4, pp. 1942-1948 (1995).
32. Holland, J.H. Adaptation in Natural and Arti cial
Systems, MIT Press, Cambridge (1992).
33. Storn, R. and Price, K. \Di erential evolution-a simple
and ecient heuristic for global optimization over
continuous spaces", J. Glob. Optim., 11(4), pp. 341-
359 (1997).
34. Nguyen, T.T. and Vo, D.N. \Improved particle swarm
optimization for combined heat and power economic
dispatch", Scientia Iranica, 23(3), pp. 1318-1334
35. Kaveh, A. and Nasrollahi, A. \Charged system search
and particle swarm optimization hybridized for optimal
design of engineering structures", Scientia Iranica,
21(2), pp. 295-305 (2014).
36. Kaveh, A. and Ahmadi, B. \Simultaneous analysis,
design and optimization of structures using the force
method and supervised charged system search algorithm",
Scientia Iranica, 20(1), pp. 65-76 (2013).
37. Gha ari-Nasab, N., Ahari, S.G., and Ghazanfari, M.
\A hybrid simulated annealing based heuristic for solving
the location-routing problem with fuzzy demands",
Scientia Iranica, 20(3), pp. 919-930 (2013).
38. Kaveh, A. and Behnam, A.F. \Design optimization
of reinforced concrete 3D structures considering frequency
constraints via a charged system search",
Scientia Iranica, 20(3), pp. 387-396 (2013).
39. Kaveh, A., Bakhshpoori, T., and Kalateh-Ahani, M.
\Optimum plastic analysis of planar frames using ant
colony system and charged system search algorithms",
Scientia Iranica, 20(3), pp. 414-421 (2013).
40. Mahata, S., Saha, S.K., Kar, R., and Mandal, D.
\Optimal design of wideband digital integrators and
di erentiators using harmony search algorithm", Int.
J. Numer. Model. (2016). doi: 10.1002/jnm.2203
41. Mahata, S., Saha, S.K., Kar, R., and Mandal, D.
\Optimal design of wideband in nite impulse response
fractional order digital integrators using colliding
bodies optimisation algorithm", IET Signal Process.,
10(9), pp. 1135-1156 (2016).
42. Mahata, S., Saha, S.K., Kar, R., and Mandal, D. \Optimal
and accurate design of fractional order digital
di erentiator - an evolutionary approach", IET Signal
Process., 11(2), pp. 181-196 (2017).
43. Chiroma, H., Shuib, N.L.M., Muaz, S.A., Abubakar,
A.I., Ila, L.B., and Maitama, J.Z. \A review of the applications
of bio-inspired
ower pollination algorithm",
Procedia Computer Science, 62, pp. 435-441 (2015).
44. Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y.,
Hamza, M.F., Shuib, L., Gital, A.Y., and Herawan,
T. \A new approach for forecasting OPEC petroleum
consumption based on neural network train by using

ower pollination algorithm", Applied Soft Comput.,
48, pp. 50-58 (2016).
45. Abd-Elaziz, A.Y., Ali, E.S., and Abd-Elazim, S.M.
\Combined economic and emission dispatch solution
ower pollination algorithm", Int. J. Electrical
Power Energy Syst., 80C, pp. 264-274 (2016).
46. Abd-Elaziz, A.Y., Ali, E.S., and Abd-Elazim, S.M.
\Flower pollination algorithm and loss sensitivity factors.........
Volume 25, Issue 6
Transactions on Computer Science & Engineering and Electrical Engineering (D)
November and December 2018
Pages 3604-3627