References:
1. Paydar, M.M., and Saidi-Mehrabad, M. "A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection", The International Journal of Advanced Manufacturing Technology, 92(5- 8), pp. 3001-3017 (2017).
2. Suh, N.P., The Principles of Design, Oxford University Press on Demand, 6 (1990).
3. Barclay, I., Dann, Z., and Holroyd, P., New Product Development, Routledge (2010).
4. Pahl, G. and Beitz, W., Engineering Design: A Systematic Approach, Springer Science & Business Media (2013).
5. Cooper, R.G. "Stage-gate systems: a new tool for managing new products", Business Horizons, 33(3), pp. 44-54 (1990).
6. Jafarian, M. and Bashiri, M. "Supply chain dynamic configuration as a result of new product development", Applied Mathematical Modelling, 38(3), pp. 1133-1146 (2014).
7. Behnia, B., Mahdavi, I., Shirazi, B., and Paydar, M.M. "A bi-objective mathematical model for cellular manufacturing system applying evolutionary algorithms", Scientia Iranica, 26(4), pp. 2541-2560 (2019).
8. Mahdavi, I., Aalaei, A., Paydar, M.M., and Solimanpur, M. "Production planning and cell formation in dynamic virtual cellular manufacturing systems with worker flexibility", International Conference on Computers & Industrial Engineering, IEEE, pp. 663- 667 (2009).
9. Mahdavi, I., Aalaei, A., Paydar, M.M., and Solimanpur, M. "Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems", International Journal of Production Research, 49(21), pp. 6517-6537 (2011).
10. Han, W., Wang, F., and Lv, J. "Virtual cellular multiperiod formation under the dynamic environment", IERI Procedia, 10, pp. 98-104 (2014).
11. Paydar, M.M., and Saidi-Mehrabad, M. "Revised multi-choice goal programming for integrated supply chain design and dynamic virtual cell formation with fuzzy parameters", International Journal of Computer Integrated Manufacturing, 28(3), pp. 251-265 (2015).
12. Baykasoglu, A. and Gorkemli, L. "Dynamic virtual cellular manufacturing through agent-based modelling", International Journal of Computer Integrated Manufacturing, 30(6), pp. 564-579 (2017).
13. Rabbani, M., Keyhanian, S., Manavizadeh, N., and Farrokhi-Asl, H. "Integrated dynamic cell formationproduction planning: A new mathematical model", Scientia Iranica, 24(5), pp. 2550-2566 (2017).
14. Rabbani, M., Farrokhi-Asl, H., and Ravanbakhsh, M. "Dynamic cellular manufacturing system considering machine failure and workload balance", Journal of Industrial Engineering International, 15(1), pp. 25-40 (2019).
15. Ulrich, K.T., Product Design and Development, Tata McGraw-Hill Education (2003).
16. Lim, W.S., and Tang, C.S. "Optimal product rollover strategies", European Journal of Operational Research, 174(2), pp. 905-922 (2006).
17. Koca, E., Souza, G.C., and Druehl, C.T. "Managing product rollovers", Decision Sciences, 41(2), pp. 403- 423 (2010).
18. Beauregard, Y., Polotski, V., Bhuiyan, N., and Thomson, V. "Optimal utilisation level for lean product development in a multitasking context", International Journal of Production Research, 55(3), pp. 795-818 (2017).
19. Nafisi, M., Wiktorsson, M., and Rosio, C. "Manufacturing involvement in new product development: An explorative case study in heavy automotive component assembly", Procedia CIRP, 50, pp. 65-69 (2016).
20. Chang, C.T. "Multi-choice goal programming with utility functions", European Journal of Operational Research, 215(2), pp. 439-445 (2011).