References:
1. Liao, S.J. and Pop, I. "Explicit analytic solution for similarity boundary layer equations", Int. J. Heat Mass Transf., 47(1), pp. 75-85 (2004).
2. Alam, M.S. and Ahammad, M.U. "Effects of variable chemical reaction and variable electric conductivity on free convective heat and mass transfer flow along an inclined stretching sheet with variable heat and mass fluxes under the influence of Dufour and Soret effects", Nonlinear Anal. Model. Control, 16, pp. 1-16 (2011).
3. Isaa, S.S.P.M., Arifin, N.M., Nazarc, R., Bachok, N., Ali, F.M., and Pop, I. "MHD mixed convection boundary layer flow of a Casson fluid bounded by permeable shrinking sheet with exponential variation", Scientia Iranica B, 24(2), pp. 637-647 (2017).
4. Ramly, N.A., Sivasankaran, S., and Noor, N.F.M. "Zero and nonzero normal fluxes of thermal radiative boundary layer flow of nano fluid over a radially stretched surface", Scientia Iranica B, 24(6), pp. 2895- 2903 (2017).
5. Khan, Y. "Magnetohydrodynamic flow of linear viscoelastic uid model above a shrinking/stretching sheet: A series solution", Scientia Iranica B, 24(5), pp. 2466- 2472 (2017).
6. Niranjan, H., Sivasankaran, S., and Bhuvaneswari, M. "Chemical reaction, Soret and Dufour effects on MHD mixed convection stagnation point flow with radiation and slip condition", Scientia Iranica B, 24(2), pp. 698- 706 (2017).
7. Hussain, Q., Asghar, S., and Alsaedi, A. "Heat transfer analysis in peristaltic slip flow with Hall and ion-slip currents", Scientia Iranica C, 23(6), pp. 2771-2783 (2016).
8. Heydari, M.M. "Investigation of fluid flow and heat transfer of compressible flow in a constricted microchannel", Scientia Iranica B, 23(5), pp. 2144-2153 (2016).
9. Cattaneo, C. "Sulla conduzione Del Calore", Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 3, pp. 83-101 (1948).
10. Christov, C.I. "On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction", Mech. Res. Commun., 36, pp. 481-486 (2009).
11. Ciarletta, M. and Straughan, B. "Uniqueness and structural stability for the Cattaneo-Christov equations", Mech. Res. Commun., 37, pp. 445-447 (2010).
12. Hayat, T., Imtiaz, M., Alsaedi, A., and Almezal, S. "On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions", J. Mol. Liq., 401, pp. 296-303 (2016).
13. Khan, M. and Khan, W.A. "Three-dimensional flow and heat transfer to Burgers fluid using Cattaneo-Christov heat flux model", J. Mol. Liq., 221,pp. 651-657 (2016).
14. Waqas, M., Hayat, T., Farooq, M., Shehzad, S.A., and Alsaedi, A. "Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid", J. Mol. Liq., 220, pp. 642-648 (2016).
15. Sui, J., Zheng, L., and Zhang, X. "Boundary layer heat and mass transfer with Cattaneo-Christov doubledi ffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity", Int. J. Therm. Sci., 104, pp. 461-468 (2016).
16. Liu, L., Zheng, L., Liu, F., and Zhang, X. "Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux", Commun. Nonlinear Sci. Numer. Simulat., 38, pp. 45-58 (2016).
17. Khan, W.A., Khan, M., and Alshomrani, A.S. "Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: Applications of non-Fourier's heat and non-Fick's mass flux models", J. Mol. Liq., 223, pp. 1039-1047 (2016).
18. Malik, M.Y., Khan, M., Salahuddin, T., and Khan, I. "Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: Using Keller box method", Engi. Sci. Tech., Int. J., 19(4), pp. 1985- 1992 (2016).
19. Muhammad, N., Nadeem, S., and Mustafa, T. "Squeezed flow of a nanofluid with Cattaneo-Christov heat and mass fluxes", Res. Phys., 7, pp. 862-869 (2017).
20. Khan, M., Shahid, A., Malik, M.Y., and Salahuddin, T. "Thermal and concentration diffusion in Jeffery nanofluid flow over an inclined stretching sheet: A generalized Fourier's and Fick's perspective", J. Mol. Liq., 251, pp. 7-14 (2018).
21. Munir, A., Shahzad, A., and Khan, M. "Convective flow of Sisko fluid over a bidirectional stretching surface", PLOS ONE, 10(6), e0130342 (2015).
22. Khan, M., Malik, R., Munir, A., and Khan, W.A. "Flow and heat transfer to Sisko nanofluid over a nonlinear stretching sheet", PLOS ONE, 10(5), e0125683 (2015).
23. Malik, R., Khan, M., Munir, A., and Khan, W.A. "Flow and heat transfer in Sisko fluid with convective boundary condition", PLOS ONE, 9(10), e107989 (2014).
24. Khan, W.A., Khan, M., Alshomrani, A.S., and Ahmad, L. "Numerical investigation of generalized Fourier's and Fick's laws for Sisko fluid flow", J. Mol. Liq., 224, pp. 1016-1021 (2016).
25. Khan, M., Ahmad, L., and Khan, W.A. "Numerically framing the impact of radiation on magnetonanoparticles for 3D Sisko
fluid flow", J. Braz. Soc. Mech. Sci. Eng., 39(11), pp. 4475-4487 (2017).
26. Awais, M., Malik, M.Y., Bilal, S., Salahuddin, T., and Hussain, A. "Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder", Res. Phys., 7, pp. 49-56 (2017).
27. Hussain, A., Malik, M.Y., Salahuddin, T., Bilal, S., and Awais, M. "Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder", J. Mol. Liq., 231, pp. 341-352 (2017).
28. Hussain, A., Malik, M.Y., Bilal, S., Awais, M., and Salahuddin, T. "Computational analysis of magnetohydrodynamic Sisko fluid flow over a stretching cylinder in the presence of viscous dissipation and temperature dependent thermal conductivity", Res. Phys., 7, pp. 139-146 (2017).
29. Fourier, J.B.J., Theorie Analytique De La Chaleur, Paris (1822).