References:
1.Stefan, J. About the theory of ice formation, in particular on the ice formation in polar seas", [Uber die Theorie der Eisbildung, Insbesondere uber die Eisbildung in Polarmaere], A. Phys. Chem., 42, pp. 269{286 (1891).
2. Goodrich, L.E. Efficient numerical technique for one dimensional thermal problems with phase change", Int. Journal of Heat Mass Transfer, 21, pp. 615{621 (1978). 3. Sparrow, E.M., Ramsey, J.W., and Harris, J.S. The transition from natural convection controlled freezing to conduction controlled freezing", Journal of Heat Transfer, 103, pp. 7{13 (1983).
4. Lacroix, M. Computation of heat transfer during melting of a pure substance from an isothermal wall", Numer. Heat Transfer B, 15, pp. 191{210 (1989). 5. Yeoh, G.H., Behnia, M., De Vahl Davis, G. et al. A numerical study of three-dimensional natural convection during freezing of water", Int. J. Numer. Mech. Engng., 30, pp. 899{914 (1990). 6. Hadji, L. and Schell, M. Interfacial pattern formation in the presence of solidification and thermal convection", Phy., Rev. A, 41, pp. 863{873 (1990). 7. Hanumanth, G.S. Solidification in the presence of natural convection", Int. Comm. Heat Mass Transfer, 17, pp. 283{292 (1990). 8. Oldenburg, C.M. and Spera, F.J. Hybrid model for solidi_cation and convection", Numerical Heat Transfer, Part B: Fundamentals, 21(2), pp. 217-229 (1992). 9. Trapaga, G., Matthys, E.F., Valecia, J.J. et al. Fluid ow, heat transfer and solidi_cation of molten metal droplets impinging on substrates: comparison of numerical and experimental results", Metall. Trans. B, 23B, pp. 701-718 (1992). 10. Watanabe, T.I., Kuribayashi, and Honda, et al. Deformation and solidi_cation of a droplet on a cold substrate", Cham. Engng. 47, pp. 3059-3065 (1992). 11. Marchi, C. San, Liu, H., Lavernia, et al. Numerical analysis of the deformation and solidi_cation of a single droplet impinging on to a at substrate", Journal Mater., 28, pp. 3313{3321 (1993). 12. Weidman, P.D. and Mahalingam, S. Axisymmetric stagnation-point ow impinging on a transversely oscillating plate with suction", J. Engineering Mathematics, 31, pp. 305{318 (1997). 13. Shokrgozar Abbasi, A. and Rahimi, A.B. Nonaxisymmetric three-dimensional stagnation-point ow and heat transfer on a at plate", Trans. ASME J. Fluids Engineering, 131(7), pp. 074501.1{074501.5 (2009). 14. Shokrgozar Abbasi, A. and Rahimi, A.B. Threedimensional stagnation-point ow and heat transfer on a at plate with transpiration", J. Thermophys. Heat Transfer, 23(3), pp. 513{521 (2009). 15. Sha_q, A., Hammouch, Z. and Turab Impact of radiation in a stagnation point ow of Walters' B uid towards a Riga plate", Thermal Science and Engineering Progress, 6, pp. 33{37 (2018). 16. Hammouch, Z., Mekkaoui, T., and Sadki, H. Similarity solutions of a steady MHD ow over a semiin _nite surface", Mathematics in Engineering, Science & Aerospace (MESA), 8(1), pp. 109{117 (2017). 17. Eriksson, D., Gasch, T., and Malm, R. Freezing of partially saturated air-entrained concrete: A multiphase description of the hygro-thermomechanical behavior", International Journal of Solids and Structures, 152{153, pp. 294{304 (2018). 18. Naganthran, K., Nazar, R., and Pop, I. Unsteady stagnation-point ow and heat transfer of a special third grade uid past a permeable stretching/shrinking sheet", Scienti_c Reports, 6(6), p. 24632 (2016). 19. Farooq, M., Javed, M., Ijaz Khan, M., et al. Melting heat transfer and double strati_cation in stagnation ow of viscous nanouid", Results in Physics, 7, pp. 2296-2301 (2017). 20. Hayat, T., Ijaz Khan, M., Waqas, M., et al. Numerical simulation for melting heat transfer and radiation e_ects in stagnation point ow of carbon-water nanouid", Computer Methods in Applied Mechanics and Engineering, 315, pp. 1011-1024 (2017). 21. Shokrgozar Abbasi, A., Rahimi, A.B. and Niazmand, H. Exact solution of three-dimensional unsteady stagnation ow on a heated plate", J. Thermophys. Heat Transfer, 25(1), pp. 55{58 (2011). 22. Shokrgozar Abbasi, A. and Rahimi, A.B. Investigation of two-dimensional unsteady stagnation ow and heat transfer impinging on an accelerated at plate", Trans. ASME J. Heat Transfer, 134(6), pp. 064501.1{ 064501.5 (2012). A. Shokrgozar Abbasi and M. Ghayeni/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 693{703 703 23. Shokrgozar Abbasi, A., Rahimi, A.B., and Mozayyeni, H. Investigation of three-dimensional axisymmetric unsteady stagnation-point ow and heat transfer impinging on an accelerated at plate", J. Applied Fluid Mechanics (JAFM), 9(1), Part 2, pp. 451{461 (2016). 24. Brattkus, K. and Davis, S.H. Flow induced morphological instabilities: stagnation-point ows", Journal of Crystal Growth, 89, pp. 423-427 (1988). 25. Rangel, R.H. and Bian, X. The inviscid stagnation- ow solidi_cation problem", Int. Journal of Heat Mass Transfer, 39(8), pp. 1591{1602 (1994). 26. Lambert, R.H. and Rangel, R.H. Solidi_cation of a supercooled liquid in stagnation-point ow", Int. Journal of Heat Mass Transfer, 46, pp. 4013{4021 (2003). 27. Yoo, J.S. E_ect of viscous plane stagnation ow on the freezing of uid", Int. Journal of Heat and Fluid Flow, l 21, pp. 735{739 (2000). 28. Mohammadiun, H., Amerian, V., Mohammadiun, M., et al. Axisymmetric stagnation-point ow and heat transfer of nano-uid impinging on a cylinder with constant wall heat ux", Thermal Science, 23(5B), pp. 3153{3164 (2019). DOI: 10.2298/TSCI171124090M (2018) 29. Rahimi, A.B. and Mozayeni, H. Similarity solutions of axisymmetric stagnation-point ow and heat transfer of a viscous, boussinesq-related density uid on a moving at plate", Scientia Iranica, B, 21(4), pp. 1440{1450 (2014). 30. Alizadeh, R., Rahimi, A.B., and Naja_, M. Nonaxisymmetric stagnation-point ow and heat transfer of a viscous uid on a stationary cylinder", Scientia Iranica, 23(5), pp. 2238{2246 (2016). 31. Shokrgozar Abbasi, A. and Rahimi, A.B. Solidi_cation of two-dimensional viscous, incompressible stagnation ow", Int. Journal of Heat Transfer, 135, pp. 072301{8 (2013). 32. Shokrgozar Abbasi, A. Three-dimensional axisymmetric solidi_cation of a viscous incompressible ow in the stagnation point region", J. Applied Fluid Mechanics (JAFM), 10(1), Part 2, pp. 413{420 (2017). 33. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd Edn., Chapter 2, Oxford Science Publications (2000).