Application of artificial accelerograms to estimating damage to dams using failure criteria

Document Type : Article

Authors

Department of Civil Engineering, Higher Polytechnic School of Avila, University of Salamanca (USAL), 50 Hornos Caleros Avenue,05003, Avila, Spain

Abstract

The aim of this paper is to analyse dam’s damage by using two recent methodologies. The first method has been used to define the performance and response curves of concrete gravity dams. The second method defines the seismic input which has been obtained from power spectral density function consistent with the response spectrum. Both methods set themselves as efficient, practical and useful to develop quite complicated analysis as the construction of the stochastic process to define the synthetic earthquake and the estimation of cracks in the dam’s body. These methodologies have been explained and revised to improve their use. The fluid behaviour contained by arch-dams is compared with the fluid behaviour in storage tanks by studying the sloshing phenomenon which is usually neglected for dams. For the mathematical modelling, interactive programming language has been used.

Keywords

Main Subjects


Refrences:
1. Omidi, O. and Lotfi, V. Seismic plastic-damage analysis  of mass concrete blocks in arch dams including  contraction and peripheral joints", Soil Dyn. Earth.  Eng., 95, pp. 118{137 (2017).  
2. Lubliner, J., Oliver, J., Oller, S., et al. A plasticdamage  model for concrete", Int. J. Sol. Stru., 25(3),  pp. 299{326 (1989).  
3. Guanglun, W., Pekau, O.A., Chuhan, Z., et al. Seismic  fracture analysis of concrete gravity dams based  on nonlinear fracture mechanics", Eng. Frac. Mech.,  65, pp. 67{87 (2000).  4. Wang, J.T., Jin, A.Y., Du, X.L., et al. Scatter  of dynamic response and damage of an arch dam  subjected to arti_cial earthquake accelerograms", Soil  Dyn. Earth. Eng., 87, pp. 93{100 (2016).  
5. Hariri-Ardebili, M.A., Furgani, L., Meghella, M., et  al. A new class of seismic damage and performance  indices for arch dams via ETA method", Eng. Stru.,  110, pp. 145{160 (2016).  
6. Hariri-Ardebili, M.A., Mirzabozorg, H., and Kianoush,  R. Comparative study of endurance time and time  history methods in seismic analysis of high arch dams",  Inter. J. Civ. Eng., 12(2), pp. 219{236 (2014).  
7. Basili, M. and Nuti, C. A simplified procedure for  base sliding evaluation of concrete gravity dams under  seismic action", Inter. Schol. Resea. Netw., 2011, pp.  1{14 (2011).  
8. Akkose, M., Adanur, S., Bayraktar, A., et al. Elastoplastic  earthquake response of arch dams including  uid-structure interaction by the Lagrangian approach",  App. Math. Mod., 32, pp. 2396{2412 (2008).  
9. Amina, T.B., Mohamed, B., Andr_e, L., et al. Fluidstructure  interaction of Brezina arch dam: 3D modal  analysis", Eng. Struc., 84, pp. 19{28 (2015).  
10. Khosravi, S. and Mohammad, M.H. Modelling of  concrete gravity dam including dam-water-foundation  rock interaction", World App. Scie. J., 22(4), pp. 538{  546 (2013).  2750 E. Zacchei and J.L. Molina/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2740{2751  
11. Demirel, E. Numerical simulation of earthquake excited  dam-reservoirs with irregular geometrics using an  immersed boundary method", Soil Dyn. Earth. Eng.,  73, pp. 80{90 (2015).  12. U.S. Army Corps of Engineers (USACE) Arch dam  design", Engineer Manual 1110-2-2201, Washington,  District of Columbia, United States (1994).  13. Benito, M.B., Navarro, M., Vidal, F., et al. A new  seismic hazard assessment in the region of Andalusia  (Southern Spain)", Bull. Earth. Eng., 8, pp. 739{766  (2010).  
14. Yang, J., Jin, F., Wang, J.T., et al. System identi-  _cation and modal analysis of an arch dam based on  earthquake response records", Soil Dyn. Earth. Eng.,  92, pp. 109{121 (2017).  
15. Garc__a-Mayordomo, J. and Insua-Ar_evalo, J.M. Seismic  hazard assessment for the Itoiz dam site (Western  Pyrenees, Spain)", Soil Dyn. Earth. Eng., 31, pp.  1051{1063 (2011).  
16. Bommer, J.J. and Acevedo, A.B. The use of real  earthquake accelerograms as input to dynamic analysis",  J. Earth. Eng., 8, pp. 43{91 (2004).  
17. Engineering Strong-Motion database (ESM), esm.mi.  ingv.it/  18. Permanent Commission on Earthquake Resistant  Standards (NCSE), Earthquake-resistant construction  standard - General part and construction",  Madrid, Spain (2002).  
19. Barbato, M. and Conte, J.P. Spectral characteristics  of non-stationary random processes: Theory and applications  to linear structural models", Prob. Eng. Mech.,  23, pp. 416{426 (2008).  
20. Koutsourelakis, P.S. A note on the _rst-passage  problem and VanMarcke's approximation - short communication",  Prob. Eng. Mech., 22, pp. 22{26 (2007).  
21. Bilici, Y., Bayraktar, A., Soyluk, K., et al. Stochastic  dynamic response of dam-reservoir-foundation systems  to spatially varying earthquake ground motions", Soil  Dyn. Earth. Eng., 29, pp. 444{458 (2009).  
22. Koh, H.M., Kim, J.K., and Park, J.H. Fluid-structure  interaction analysis of 3-D rectangular tanks by a  variationally coupled BEM-FEM and comparison with  test results", Earth Eng. Stru. Dyn., 27, pp. 109{124  (1998).  
23. Housner, G.W. The dynamic behavior of water  tanks", Bull. Seism. Soc. Am., 53(2), pp. 381{387  (1963).  
24. Zheng, X., Ma, Q.W., and Duan, W.Y. Comparison  of di_erent iterative schemes for ISPH based on Rankine  source solution", Int. J. Nav. Arch. Oce. Eng., 9,  pp. 390{403 (2017).  
25. Qin, J., Chen, B., and Lu, L. Finite element based  viscous numerical wave ume", Adv. Mech. Eng.,  2013, pp. 1{17 (2013).  26. Seismogenic Source Zones of the Iberian Peninsula  (ZESIS) (2015). http://info.igme.es/zesis  
27. International Commission on Large Dams (ICOLD),  Selecting seismic parameters for large dams", Bulletin  No. 148, Paris, France (2016).  
28. Brazilian Association of Technical Standards (ABNT)  Project of earthquake resistant structures - Procedure",  ABNT NBR 15421:2006, Rio de Janeiro, Brazil  (2006).  
29. Venezuelan Foundation for Seismological Research  (FUNVISIS) Earthquake-resistant buildings - Part  1: Requirements", COVENIN 1756-1:2001, Caracas,  Venezuela (2001).  
30. Ministry of Infrastructure and Transport (MIT) Technical  standards for buildings", NTR 2008, Roma, Italy  (2008).  
31. Comit_e Europ_een de Normalisation (CEN) Design of  structures for earthquake resistance - Part 1: General  rules, seismic actions and rules for buildings", EN  1998-1:2004, Brussels, Belgium (2004).  
32. Barone, G., Lo Iacono F., Navarra, G., et al. A novel  analytical model of power spectral density function  coherent with earthquake response spectra", 1st ECCOMAS  Them. Conf. Unc. Quant. Comp. Sci. Eng.  UNCECOMP 2015, Crete Island, Greece, pp. 1{13  (2015).  
33. Barbat, A.H., Orosco, L., Hurtado, J.E., et al.,  De_nition of Seismic Action, International Center for  Numerical Methods in Engineering, Seismic Engineering  Monographs, Monograph CIMNE IS-10 (1994).  
34. Preumont, A. The generation of spectrum compatible  accelerograms for the design of nuclear power plants",  Earth. Eng. Stru. Dyn., 12, pp. 481{497 (1984).  
35. Fergany, E. and Hutchings, L. Demonstration of pb-  PSHA with Ras-Elhekma earthquake, Egypt", NRIAG  J. Astr. Geoph., 6(1), pp. 41{51 (2017).  
36. Zacchei, E., Molina, J.L., and Brasil, L.R.F.R.M.  Seismic hazard assessment of arch dams via dynamicmodelling:  an application to the Rules Dam in  Granada, SE Spain", Int. J. Civ. Eng., 2017, pp. 1{10  (2017).  
37. Cacciola, P. A stochastic approach for generating  spectrum compatible fully nonstationary earthquakes",  Comp. Stru., 88(15), pp. 889{901 (2010).  
38. Der Kiureghian, A. A response spectrum method for  random vibrations", Earthquake Engineering Research  Center, Report No. UCB/EERC-80/15, Berkeley, California  (1980).  
39. Chtcot, R. and Brasil, L.R.F.M.R. Seismic analysis  of a shear building model", Proc. XXXVII Ibe. Latin-  Ame. Congr. Comp. Meth. Eng. CILAMCE 2016,  Brasilia, Brazil, pp. 1{12 (2016).  
40. Cottone, G. and Di Paola, M. A new representation  of power spectral density and correlation function by  means of factional spectral moments", Prob. Eng.  Mech., 25, pp. 348{353 (2010).  41. Di Paola, M., La Mendola, L., and Navarra, G.  Stochastic seismic analysis of structures with nonlinear  viscous dampers", J. Stru. Eng., 133(10), pp.  1475{1478 (2007).  E. Zacchei and J.L. Molina/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2740{2751 2751  
42. Sundararajan, C. An iterative method for the generation  of seismic power spectral density functions", Nucl.  Eng. Des., 61(1), pp. 13{23 (1980).  
43. Alembagheri, M. Earthquake damage estimation of  concrete gravity dams using linear analysis and empirical  failure criteria", Soil Dyn. Earth. Eng., 90, pp.  327{339 (2016).  
44. U.S. Army Corps of Engineers (USACE), Simplified  analysis of concrete gravity dams including foundation  flexibility", Report No. 0704-0188 Washington, District  of Columbia, United States (1989).  
45. Joghataie, A. and Dizaji, M.S. Reducing extent  of cracks and increasing time to failure of concrete  gravity dams by optimization of properties of layers  of concrete", Scie. Ira., 21(1), pp. 67{81 (2014).  
46. Ghaemian, M., Vafai, A.H., and Karimi, Z. Nonlinear  seismic response of concrete gravity dams due to  foundation fault movement", Scie. Ira., 21(5), pp.  1539{1548 (2014).  
47. Sotoudeh, M.A., Ghaemian, M., and Moghadam, A.S.  Determination of limit-states for near-fault seismic  fragility assessment of concrete gravity dams", Scie.  Ira., 98(21), pp. 1{23 (2018).  
48. Zacchei, E. and Brasil, L.R.F.R.M. Seismic action on  oil storage tanks: Induced pressures, total response  and state of buckling", Inter. J. Mod. Sim. Petr. Indu.,  10(1), pp. 45{53 (2017).  
49. U.S. Army Corps of Engineers (USACE) Theoretical  manual for analysis of arch dams", Technical Report  ITL-93-1, Washington, District of Columbia, United  States (1993).  
50. Mill_an, M.A., Young, Y.L., and Pr_evost, J.K. The  effects of reservoir geometry on the seismic response of  gravity dams. Part 1: Analytical model", Earth. Eng.  Stru. Dyn., 00, pp. 1{6 (2002). 
 51. Comittie Europ_een de Normalisation (CEN) Design of  structures for earthquake resistance - Part 4: Silos,  tanks and pipelines", EN 1998-4:2006, Brussels, Belgium  (2006). 
 52. Wolfram Mathematica (Version 11 Student Edition),  Wolfram Research, Inc (2017).  
53. Clough, R.W. and Penzien, J., Dynamics of Structures,  3rd Ed., McGraw-Hill, New York (2003). 
Volume 27, Issue 6 - Serial Number 6
Transactions on Civil Engineering (A)
November and December 2020
Pages 2740-2751
  • Receive Date: 08 April 2018
  • Revise Date: 25 September 2018
  • Accept Date: 03 December 2018