Refrences:
1. Omidi, O. and Lotfi, V. Seismic plastic-damage analysis of mass concrete blocks in arch dams including contraction and peripheral joints", Soil Dyn. Earth. Eng., 95, pp. 118{137 (2017).
2. Lubliner, J., Oliver, J., Oller, S., et al. A plasticdamage model for concrete", Int. J. Sol. Stru., 25(3), pp. 299{326 (1989).
3. Guanglun, W., Pekau, O.A., Chuhan, Z., et al. Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics", Eng. Frac. Mech., 65, pp. 67{87 (2000). 4. Wang, J.T., Jin, A.Y., Du, X.L., et al. Scatter of dynamic response and damage of an arch dam subjected to arti_cial earthquake accelerograms", Soil Dyn. Earth. Eng., 87, pp. 93{100 (2016).
5. Hariri-Ardebili, M.A., Furgani, L., Meghella, M., et al. A new class of seismic damage and performance indices for arch dams via ETA method", Eng. Stru., 110, pp. 145{160 (2016).
6. Hariri-Ardebili, M.A., Mirzabozorg, H., and Kianoush, R. Comparative study of endurance time and time history methods in seismic analysis of high arch dams", Inter. J. Civ. Eng., 12(2), pp. 219{236 (2014).
7. Basili, M. and Nuti, C. A simplified procedure for base sliding evaluation of concrete gravity dams under seismic action", Inter. Schol. Resea. Netw., 2011, pp. 1{14 (2011).
8. Akkose, M., Adanur, S., Bayraktar, A., et al. Elastoplastic earthquake response of arch dams including uid-structure interaction by the Lagrangian approach", App. Math. Mod., 32, pp. 2396{2412 (2008).
9. Amina, T.B., Mohamed, B., Andr_e, L., et al. Fluidstructure interaction of Brezina arch dam: 3D modal analysis", Eng. Struc., 84, pp. 19{28 (2015).
10. Khosravi, S. and Mohammad, M.H. Modelling of concrete gravity dam including dam-water-foundation rock interaction", World App. Scie. J., 22(4), pp. 538{ 546 (2013). 2750 E. Zacchei and J.L. Molina/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2740{2751
11. Demirel, E. Numerical simulation of earthquake excited dam-reservoirs with irregular geometrics using an immersed boundary method", Soil Dyn. Earth. Eng., 73, pp. 80{90 (2015). 12. U.S. Army Corps of Engineers (USACE) Arch dam design", Engineer Manual 1110-2-2201, Washington, District of Columbia, United States (1994). 13. Benito, M.B., Navarro, M., Vidal, F., et al. A new seismic hazard assessment in the region of Andalusia (Southern Spain)", Bull. Earth. Eng., 8, pp. 739{766 (2010).
14. Yang, J., Jin, F., Wang, J.T., et al. System identi- _cation and modal analysis of an arch dam based on earthquake response records", Soil Dyn. Earth. Eng., 92, pp. 109{121 (2017).
15. Garc__a-Mayordomo, J. and Insua-Ar_evalo, J.M. Seismic hazard assessment for the Itoiz dam site (Western Pyrenees, Spain)", Soil Dyn. Earth. Eng., 31, pp. 1051{1063 (2011).
16. Bommer, J.J. and Acevedo, A.B. The use of real earthquake accelerograms as input to dynamic analysis", J. Earth. Eng., 8, pp. 43{91 (2004).
17. Engineering Strong-Motion database (ESM), esm.mi. ingv.it/ 18. Permanent Commission on Earthquake Resistant Standards (NCSE), Earthquake-resistant construction standard - General part and construction", Madrid, Spain (2002).
19. Barbato, M. and Conte, J.P. Spectral characteristics of non-stationary random processes: Theory and applications to linear structural models", Prob. Eng. Mech., 23, pp. 416{426 (2008).
20. Koutsourelakis, P.S. A note on the _rst-passage problem and VanMarcke's approximation - short communication", Prob. Eng. Mech., 22, pp. 22{26 (2007).
21. Bilici, Y., Bayraktar, A., Soyluk, K., et al. Stochastic dynamic response of dam-reservoir-foundation systems to spatially varying earthquake ground motions", Soil Dyn. Earth. Eng., 29, pp. 444{458 (2009).
22. Koh, H.M., Kim, J.K., and Park, J.H. Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results", Earth Eng. Stru. Dyn., 27, pp. 109{124 (1998).
23. Housner, G.W. The dynamic behavior of water tanks", Bull. Seism. Soc. Am., 53(2), pp. 381{387 (1963).
24. Zheng, X., Ma, Q.W., and Duan, W.Y. Comparison of di_erent iterative schemes for ISPH based on Rankine source solution", Int. J. Nav. Arch. Oce. Eng., 9, pp. 390{403 (2017).
25. Qin, J., Chen, B., and Lu, L. Finite element based viscous numerical wave ume", Adv. Mech. Eng., 2013, pp. 1{17 (2013). 26. Seismogenic Source Zones of the Iberian Peninsula (ZESIS) (2015). http://info.igme.es/zesis
27. International Commission on Large Dams (ICOLD), Selecting seismic parameters for large dams", Bulletin No. 148, Paris, France (2016).
28. Brazilian Association of Technical Standards (ABNT) Project of earthquake resistant structures - Procedure", ABNT NBR 15421:2006, Rio de Janeiro, Brazil (2006).
29. Venezuelan Foundation for Seismological Research (FUNVISIS) Earthquake-resistant buildings - Part 1: Requirements", COVENIN 1756-1:2001, Caracas, Venezuela (2001).
30. Ministry of Infrastructure and Transport (MIT) Technical standards for buildings", NTR 2008, Roma, Italy (2008).
31. Comit_e Europ_een de Normalisation (CEN) Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings", EN 1998-1:2004, Brussels, Belgium (2004).
32. Barone, G., Lo Iacono F., Navarra, G., et al. A novel analytical model of power spectral density function coherent with earthquake response spectra", 1st ECCOMAS Them. Conf. Unc. Quant. Comp. Sci. Eng. UNCECOMP 2015, Crete Island, Greece, pp. 1{13 (2015).
33. Barbat, A.H., Orosco, L., Hurtado, J.E., et al., De_nition of Seismic Action, International Center for Numerical Methods in Engineering, Seismic Engineering Monographs, Monograph CIMNE IS-10 (1994).
34. Preumont, A. The generation of spectrum compatible accelerograms for the design of nuclear power plants", Earth. Eng. Stru. Dyn., 12, pp. 481{497 (1984).
35. Fergany, E. and Hutchings, L. Demonstration of pb- PSHA with Ras-Elhekma earthquake, Egypt", NRIAG J. Astr. Geoph., 6(1), pp. 41{51 (2017).
36. Zacchei, E., Molina, J.L., and Brasil, L.R.F.R.M. Seismic hazard assessment of arch dams via dynamicmodelling: an application to the Rules Dam in Granada, SE Spain", Int. J. Civ. Eng., 2017, pp. 1{10 (2017).
37. Cacciola, P. A stochastic approach for generating spectrum compatible fully nonstationary earthquakes", Comp. Stru., 88(15), pp. 889{901 (2010).
38. Der Kiureghian, A. A response spectrum method for random vibrations", Earthquake Engineering Research Center, Report No. UCB/EERC-80/15, Berkeley, California (1980).
39. Chtcot, R. and Brasil, L.R.F.M.R. Seismic analysis of a shear building model", Proc. XXXVII Ibe. Latin- Ame. Congr. Comp. Meth. Eng. CILAMCE 2016, Brasilia, Brazil, pp. 1{12 (2016).
40. Cottone, G. and Di Paola, M. A new representation of power spectral density and correlation function by means of factional spectral moments", Prob. Eng. Mech., 25, pp. 348{353 (2010). 41. Di Paola, M., La Mendola, L., and Navarra, G. Stochastic seismic analysis of structures with nonlinear viscous dampers", J. Stru. Eng., 133(10), pp. 1475{1478 (2007). E. Zacchei and J.L. Molina/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2740{2751 2751
42. Sundararajan, C. An iterative method for the generation of seismic power spectral density functions", Nucl. Eng. Des., 61(1), pp. 13{23 (1980).
43. Alembagheri, M. Earthquake damage estimation of concrete gravity dams using linear analysis and empirical failure criteria", Soil Dyn. Earth. Eng., 90, pp. 327{339 (2016).
44. U.S. Army Corps of Engineers (USACE), Simplified analysis of concrete gravity dams including foundation flexibility", Report No. 0704-0188 Washington, District of Columbia, United States (1989).
45. Joghataie, A. and Dizaji, M.S. Reducing extent of cracks and increasing time to failure of concrete gravity dams by optimization of properties of layers of concrete", Scie. Ira., 21(1), pp. 67{81 (2014).
46. Ghaemian, M., Vafai, A.H., and Karimi, Z. Nonlinear seismic response of concrete gravity dams due to foundation fault movement", Scie. Ira., 21(5), pp. 1539{1548 (2014).
47. Sotoudeh, M.A., Ghaemian, M., and Moghadam, A.S. Determination of limit-states for near-fault seismic fragility assessment of concrete gravity dams", Scie. Ira., 98(21), pp. 1{23 (2018).
48. Zacchei, E. and Brasil, L.R.F.R.M. Seismic action on oil storage tanks: Induced pressures, total response and state of buckling", Inter. J. Mod. Sim. Petr. Indu., 10(1), pp. 45{53 (2017).
49. U.S. Army Corps of Engineers (USACE) Theoretical manual for analysis of arch dams", Technical Report ITL-93-1, Washington, District of Columbia, United States (1993).
50. Mill_an, M.A., Young, Y.L., and Pr_evost, J.K. The effects of reservoir geometry on the seismic response of gravity dams. Part 1: Analytical model", Earth. Eng. Stru. Dyn., 00, pp. 1{6 (2002).
51. Comittie Europ_een de Normalisation (CEN) Design of structures for earthquake resistance - Part 4: Silos, tanks and pipelines", EN 1998-4:2006, Brussels, Belgium (2006).
52. Wolfram Mathematica (Version 11 Student Edition), Wolfram Research, Inc (2017).
53. Clough, R.W. and Penzien, J., Dynamics of Structures, 3rd Ed., McGraw-Hill, New York (2003).