Gene expression programming models for liquefaction-induced lateral spreading

Document Type : Article

Authors

1 School of Engineering, Persian Gulf University, Bushehr, Iran

2 Civil Engineering Group, Islamic Azad University, Bushehr, Iran

Abstract

Lateral spreading is one of the most significant destructive and catastrophic phenomena associated with liquefaction caused by earthquake and can impose very serious damages to structures and engineering facilities. The aim of this study is to evaluate liquefaction induced lateral spreading and finding new relations using gene expression programming (GEP) that is a new and developed generation of genetic algorithms approaches. Since there are complicated, nonlinear and higher order relationships between many factors affecting the lateral spreading, GEP is assumed to be capable of finding complex and accurate relationships between these factors. This study includes three main stages: (i) compilation of available database (484 data), (ii) dividing data into training and testing categories, and (iii) building new models and propose new relationships to predict ground displacement in free face, gentle slope and general ground conditions. The results of modeling each of the different ground conditions are presented in the form of mathematical equations. At the end, the final GEP models for 3 different cases of ground conditions are compared with multiple linear regression (MLR) and other published models. The statistical parameters indicate the higher accuracy of the GEP models over other relations.

Keywords

Main Subjects


 

Refrences:
1. Bartlett, S.F. and Youd, T.L., Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral Spreads, US National Center for Earthquake Engineering Research (NCEER) (1992). 
2. Javadi, A.A., Rezania, M., and Nezhad, M.M. Evaluation of liquefaction induced lateral displacements using genetic programming", Comput. Geotech., 33(4{5), pp. 222{233 (2006). https://doi.org /10.1016/j.compgeo.2006.05.001 3
. Newmark, N.M. E_ects of earthquakes on dams and embankments", Geotechnique, 15(2), pp. 139{160 (1965). https://doi.org/10.1680/geot.1965.15.2.139 
4. Yegian, M.K., Marciano, E.A., and Ghahraman, V.G. Earthquake-induced permanent deformations: probabilistic approach", J. Geotech. Eng., 117(1), pp. 35{50 (1991). https://doi.org/10.1061/(ASCE)0733- 9410(1991)117:1(35) 
5. Baziar, M.H., Dobry, R., and Elgamal, A., Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction, US National Center for Earthquake Engineering Research (NCEER) (1992). 
6. Jibson, R.W. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis", Transp. Res. Rec., 1411, pp. 9{17 (1993). 
7. Towhata, I., Sasaki, Y., Tokida, K.I., et al. Prediction of permanent displacement of lique- _ed ground by means of minimum energy principle", Soils Found., 32(3), pp. 97{116 (1992). https://doi.org/10.3208/sandf1972.32.3 97 
8. Tokida, K., Matsumoto, H., Azuma, T., et al. Simplified procedure to estimate lateral ground ow by soil liquefaction", In Soil Dyn. Earthq. Eng. VI, WIT Trans. Built Environ., Brebbia ASC and CA, Editor., Elsevier, pp. 381{396 (1993). 
9. Finn, W.D. Assessment of liquefaction potential and post-liquefaction behavior of earth structures: developments 1981-1991", Second Int. Conf. Recent Adv. Geotech. Earthq. Eng. Soil Dyn., University of Missouri (1991). A. Keshavarz and H. Tofighi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2704{2718 2717 
10. Finn, W.D., Ledbetter, R.H., and Wu, G. Liquefaction in silty soils: design and analysis", Gr. Fail. under Seism. Cond., American Society of Civil Engineers (ASCE), pp. 51{76 (1994). 11. Gu, W.H., Morgenstern, N.R., and Robertson, P.K. Postearthquake deformation analysis of Wildlife site", J. Geotech. Eng., 120(2), pp. 274{289 (1994). https://doi.org/10.1061/(ASCE)0733-9410(1994) 120:2(274) 
12. Yasuda, S., Nagase, H., Kiku, H., et al. The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction", Soils Found., 32(1), pp. 149{160 (1992). https://doi.org/10.3208/sandf1972.32.149 
13. Ghasemi-Fare, O. and Pak, A. Numerical investigation of the e_ects of geometric and seismic parameters on liquefaction-induced lateral spreading", Soil Dyn. Earthq. Eng., 89, pp. 233{247 (2016). https://doi.org/10.1016/J.SOILDYN.2016.08.014 
14. de la Maza, G., Williams, N., S_aez, E., et al. Liquefaction-induced lateral spread in Lo Rojas, Coronel, Chile: _eld study and numerical modeling", Earthq. Spectra, 33(1), pp. 219{240 (2017). https://doi.org/10.1193/012015EQS012M 
15. Munter, S.K., Boulanger, R.W., Krage, C.P., et al. Evaluation of liquefaction-induced lateral spreading procedures for interbedded deposits: C_ ark Canal in the 1999 M7.5 Kocaeli earthquake", Geotech. Front. 2017, American Society of Civil Engineers, Reston, VA. pp. 254{266 (2017). https://doi.org/10.1061 /9780784480489.026 
16. Boulanger, R.W., Moug, D.M., Munter, S.K., et al. Evaluating liquefaction and lateral spreading in interbedded sand, silt, and clay deposits using the cone penetrometer", Aust. Geomech. J., 51(4), pp. 109{128 (2016). 
17. Baziar, M.H. and Saeedi Azizkandi, A. Evaluation of lateral spreading utilizing arti_cial neural network and genetic programming", Int. J. Civ. Eng., 11(2), pp. 100{111 (2013). 
18. Wang, J. and Rahman, M.S. A neural network model for liquefaction-induced horizontal ground displacement", Soil Dyn. Earthq. Eng., 18(8), pp. 555{568 (1999). https://doi.org/10.1016/S0267-7261(99)00027- 5 
19. Shamoto, Y., Zhang, J.-M., and Tokimatsu, K. New charts for predicting large residual post-liquefaction ground deformation", Soil Dyn. Earthq. Eng., 17(7), pp. 427{438 (1998). https://doi.org/10.1016/S0267- 7261(98)00011-6 
20. Zhang, G., Robertson, P.K., and Brachman, R.W.I. Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test", J. Geotech. Geoenvironmental Eng., 130(8), pp. 861{871 (2004). https://doi.org/10.1061/(ASCE)1090-0241(2004)130: 8(861) 
21. Hamada, M., Yasuda, S., Isoyama, R., et al., Study on Liquefaction Induced Permanent Ground Displacements, Association for the Development of Earthquake Prediction Japan (1986). 
22. Youd, T.L. and Perkins, D.M. Mapping of liquefaction severity index", J. Geotech. Eng., 113(11), pp. 1374{1392 (1987). 
23. Bartlett, S.F. and Youd, T.L. Empirical prediction of liquefaction-induced lateral spread", J. Geotech. Eng., 121(4), pp. 316{329 (1995). 
24. Bardet, J.P., Mace, N., and Tobita, T., Liquefaction- Induced Ground Deformation and Failure, Pacific Earthquake Engineering Research Center (PEER) (1999). 
25. Bardet, J.P., Tobita, T., Mace, N., et al. Regional modeling of liquefaction-induced ground deformation", Earthq. Spectra, 18(1), pp. 19{46 (2002). https://doi.org/10.1193/1.1463409
26. Rauch, A.F. and Martin, J.R. EPOLLS model for predicting average displacements on lateral spreads", J. Geotech. Geoenvironmental Eng., 126(4), pp. 360{ 371 (2000). 
27. Youd, T.L., Hansen, C.M., and Bartlett, S.F. Revised multilinear regression equations for prediction of lateral spread displacement", J. Geotech. Geoenvironmental Eng., 128(12), pp. 1007{1017 (2002). https://doi.org/10.1061/(ASCE)1090-0241(2002) 128:12(1007) 
28. Zhang, J. and Zhao, J.X. Empirical models for estimating liquefaction-induced lateral spread displacement", Soil Dyn. Earthq. Eng., 25(6), pp. 439{450 (2005). https://doi.org/10.1016/j.soildyn.2005.04.002 
29. Zhang, J., Yang, C., Zhao, J.X., et al. Empirical models for predicting lateral spreading considering the effect of regional seismicity", Earthq. Eng. Eng. Vib., 11(1), pp. 121{131 (2012). https://doi.org/10.1007/s11803-012-0103-7 
30. Kalantary, F., MolaAbasi, H., Salahi, M., et al. Prediction of liquefaction induced lateral displacements using robust optimization model", Sci. Iran., 20(2), pp. 242{250 (2013). https://doi.org/10.1016/j.scient.2012.12.025 
31. Goh, A.T.C. and Zhang, W.G. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, pp. 1{10 (2014). https://doi.org/10.1016/j.enggeo.2013.12.003 
32. Khoshnevisan, S., Juang, H., Zhou, Y.-G., et al. Probabilistic assessment of liquefaction-induced lateral spreads using CPT { Focusing on the 2010{2011 Canterbury earthquake sequence", Eng. Geol., 192, pp. 113{128 (2015). https://doi.org/10.1016/J.ENGGEO.2015.04.001 
33. Hasan_cebi, N., Ulusay, R., and  Onder C_ etin, K. A new empirical method to predict liquefaction-induced lateral spread", Eng. Geol. Soc. Territ., 5, Springer International Publishing, Cham., pp. 1071{1075 (2015). https://doi.org/10.1007/978-3-319-09048-1 203 2718 A. Keshavarz and H. To_ghi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2704{2718 
34. Baziar, M.H. and Ghorbani, A. Evaluation of lateral spreading using arti_cial neural networks", Soil Dyn. Earthq. Eng., 25(1), pp. 1{9 (2005). https://doi.org/10.1016/j.soildyn.2004.09.001 
35. Kaya, Z. Predicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniques", Int. J. Geomech., 16(4), pp. 04015095 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622. 0000607 
36. Goharriz, M. and Marandi, S.M. An optimized neurofuzzy group method of data handling system based on gravitational search algorithm for evaluation of lateral ground displacements", Int. J. Optim. Civ. Eng., 6(3), pp. 385{403 (2016). 
37. Rezania, M., Faramarzi, A., and Javadi, A.A. An evolutionary based approach for assessment of earthquakeinduced soil liquefaction and lateral displacement", Eng. Appl. Artif. Intell., 24(1), pp. 142{153 (2011). https://doi.org/10.1016/j.engappai.2010.09.010 
38. Mola-Abasi, H. and Shooshpasha, I. Prediction of liquefaction induced lateral displacements using plynomial neural networks and genetic algorithms", 15th World Conf. Earthq. Eng., Lisbon, Portugal (2012). 
39. Johari, A., Habibagahi, G., and Nakhaee, M. Prediction of unsaturated soils e_ective stress parameter using gene expression programming", Sci. Iran., 20(5), pp. 1433{1444 (2013). 
40. Keshavarz, A. and Mehramiri, M. New gene expression programming models for normalized shear modulus and damping ratio of sands", Eng. Appl. Artif. Intell., 45, pp. 464{472 (2015). https://doi.org/10.1016/j.engappai.2015.07.022 
41. Johari, A., Javadi, A.A., and Kaja_, H. A geneticbased model to predict maximum lateral displacement of retaining wall in granular soil", Sci. Iran., 23(1), pp. 54{65 (2016). 
42. Johari, A. and Nejad, A.H. Prediction of soil-water characteristic curve using gene expression programming", Iran. J. Sci. Technol. Trans. Civ. Eng., 39(C1), pp. 143{165 (2015). 43. Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), pp. 87{129 (2001). 
44. Ferreira, C., Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Stud. Comput. Intell. Springer, 2nd, Revis Ed., New York (2006). https://doi.org/10.1007/3-540-32849-1 
45. Ferreira, C. Mutation, transposition, and recombination: An analysis of the evolutionary dynamics", 6th Jt. Conf. Inf. Sci. 4th Int. Work. Front. Evol. Algorithms, North Carolina, USA, pp. 614{617 (2002).
Volume 27, Issue 6 - Serial Number 6
Transactions on Civil Engineering (A)
November and December 2020
Pages 2704-2718
  • Receive Date: 27 December 2017
  • Revise Date: 19 September 2018
  • Accept Date: 13 November 2018