Wireless smart sensors for monitoring the health condition of civil infrastructure

Document Type : Review Article


1 Faculty of Engineering, Departments of Electromechanical, and Biomedical Engineering. Autonomous University of Queretaro, Campus San Juan del Rio, Moctezuma 249, Col. San Cayetano, 76807, San Juan del Rio, Queretaro, Mexico

2 Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43220, U.S.A


A wireless smart sensor (WSS) has an embedded processor which is employed for signal processing, communication, and integration capabilities.  A state-of-the-art review of recent articles on the WSS technologies employed in structural health monitoring (SHM) is presented in this paper. Different types of WSS and communication technologies are reviewed and their advantages and disadvantages are pointed out. WSS networks provide a number of advantages for SHM such as robust data management, higher flexibility, low cost, and high potential for providing data for better understanding of structural response and behavior. Hybrid platforms, fusing different technological platforms, appear to be promising schemes as the strengths of each technology are exploited. Next generation WSS must consume less power, integrate more with new sensors, have improved noise immunity, and be capable of working with a huge quantity of data without losses produced by wireless communication. Power harvesting based on wind, solar, and structural vibration energy needs to be explored further for long-term. Truly smart sensors should have inherent pattern recognition and machine learning capabilities. Authors advance the research ideology of integrating the sensor technology with recent advances in machine learning technologies.


Main Subjects

1. ASCE, Failure to Act: Closing the Infrastructure
Investment Gap for America's Economic Future,
American Society of Civil Engineers, Reston, Virginia
2. Karami, K. and Akbarabadi, S. Developing a smart
structure using integrated subspace-based damage
detection and semi-active control", Comput-Aided
Civ. Inf., 31(11), pp. 887-903 (2016).
3. Lin, Y.Z., Nie, Z.H., and Ma, H.W. Structural
damage detection with automatic feature-extraction
through deep learning", Comput-Aided Civ. Inf.,
32(12), pp. 1025-1046 (2017).
4. Oh, B.K., Kim, D., and Park, H.S. Modal responsebased
visual system identi cation and model updating
methods for building structures", Comput-Aided
Civ. Inf., 32(1), pp. 34-56 (2017).
5. Amezquita-Sanchez, J.P. and Adeli, H. Signal processing
techniques for vibration-based health monitoring
of smart structures", Arch. Comput. Method.
E., 23(1), pp. 1-15 (2016).
6. Fernandez-Luque, F.J., Perez, D., Zapata, J., et al.
Automatically calibrated occupancy sensors for an
ambient assisted living system", Integr. Comput-Aid
E., 23(3), pp. 287-298 (2016).
7. Yin, T., Yuen, K.V., Lam, H.F. et al. Entropy-based
optimal sensor placement for model identi cation
of periodically articulated structures endowed with
bolted joints", Comput-Aided Civ. Inf., 32(12), pp.
1007-1024 (2017).
8. Quintian, H. and Corchado, E. Beta Hebbian learning
as a new method for exploratory projection
pursuit", Int. J. Neural Syst., 27(6), 1750024 (16
pages) (2017).
9. Fernandez, A., Carmona, C.J., del Jesus, M.J. et al.
A pareto based ensemble with feature and instance
selection for learning from multi-class imbalanced
datasets", Int. J. Neural Syst., 27(6), 1750028 (21
pages) (2017).
10. Ra ei, M.H. and Adeli, H. A novel unsupervised
deep learning model for global and local health condition
assessment of structures", Eng. Struct., 156,
pp. 598-607 (2018).
11. Bajwa, R., Coleri, E., Rajagopal, R. et al. Development
of a cost e ective wireless vibration weighin-
motion system to estimate axle weights of trucks",
Comput-Aided Civ. Inf., 32(6), pp. 443-457 (2017).
12. Sabato, A., Niezrecki, C., and Fortino, G. Wireless
MEMS-based accelerometer sensor boards for structural
vibration monitoring: a review", IEEE Sens. J.,
17(2), pp. 226-235 (2017).
13. Lei, Y., Zhou, H., and Lai, Z.L. A computationally
compact algorithm for real-time detection of abrupt
structural sti ness degradations", Comput-Aided Civ.
Inf., 31(6), pp. 465-480 (2016).
14. Zhi, L., Li, Q.S., and Fang, M. Identi cation of wind
loads and estimation of structural responses of supertall
buildings by an inverse method", Comput-Aided
Civ. Inf., 31(12), pp. 966-982 (2016).
15. Tsogka, C., Daskalakis, E., Comanducci, G. et al.
The stretching method for vibration-based structural
health monitoring of civil structures", Comput-
Aided Civ. Inf., 32(4), pp. 288-303 (2017).
16. Griol, D., Iglesias, J.A., Ledezma A. et al. A twostage
combining classi er model for the development
of adaptive dialog systems", Int. J. Neural Syst.,
26(1), 165002 (21 pages) (2016).
17. Zhong, Y. and Xiang, J. A two-dimensional plumblossom
sensor array-based multiple signal classi -
cation method for impact localization in composite
structures", Comput-Aided Civ. Inf., 31(8), pp. 633-
643 (2016).
18. Lynch, J.P. and Loh, K.J. A summary review of
wireless sensors and sensor networks for structural
health monitoring", Shock Vib., 38(2), pp. 91-130
19. Noel, A.B., Abdaoui, A., Elfouly, T. et al. Structural
health monitoring using wireless sensor networks: A
comprehensive survey", IEEE Commun. Surv. Tut.,
19(3), pp. 1403-1423 (2017).
20. Sirca Jr., G.F. and Adeli, H. System identi cation in
structural engineering", Sci. Iran., 19(6), pp. 1355-
1364 (2012).
21. Shan, J., Ouyang, Y., Yuan, H. et al. Seismic data
driven identi cation of linear physical models for
building structures using performance and stabilizing
objectives", Comput-Aided Civ. Inf., 31(11), pp. 846-
870 (2016).
22. Kim, D., Oh, B.K., Park, H.S. et al. Modal
identi cation for high-rise building structures using
orthogonality of ltered response vectors", Comput-
Aided Civ. Inf., 32(12), pp. 1064-1084 (2017).
2922 J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2913{2925
23. Qarib, H. and Adeli, H. Recent advances in health
monitoring of civil structures", Sci. Iran., 21(6), pp.
1733-1742 (2014).
24. Amezquita-Sanchez, J.P. and Adeli, H. Feature
extraction and classi cation techniques for health
monitoring of structures", Sci. Iran., 22(6), pp. 1931-
1940 (2015).
25. Perez-Ramirez, C.A., Amezquita-Sanchez, J.P.,
Adeli, H. et al. Time-frequency techniques for modal
parameters identi cation of civil structures from acquired
dynamic signals", J. Vibroeng., 18(5), pp.
3164-3185 (2016).
26. Bursi, O.S., Kumar, A., Abbiati, G. et al. Identi -
cation, model updating, and validation of a steel twin
deck curved cable-stayed footbridge", Comput-Aided
Civ. Inf., 29(9), pp. 703-722 (2014).
27. Cho, S. and Spencer Jr, B.F. Sensor attitude correction
of wireless sensor network for acceleration-based
monitoring of civil structures", Comput-Aided Civ.
Inf., 30(11), pp. 859-871 (2015).
28. Amezquita-Sanchez, J.P., Park, H.S., and Adeli, H.
A novel methodology for modal parameters identi
cation of large smart structures using MUSIC,
empirical wavelet transform, and Hilbert transform",
Eng. Struct., 147, pp. 148-159 (2017).
29. Jang, S., Jo, H., Cho, S. et al. Structural health
monitoring of a cable-stayed bridge using smart sensor
technology: Deployment and evaluation", Smart
Struct. Syst., 6, pp. 439-459 (2010).
30. Cho, S., Jo, H., Jang, S. et al. Structural health
monitoring of a cable-stayed bridge using wireless
smart sensor technology: data analyses", Smart
Struct. Syst., 6(5-6), pp. 461-480 (2010).
31. Zou, Z., Bao, Y., Deng, F. et al. An approach of
reliable data transmission with random redundancy
for wireless sensors in structural health monitoring",
IEEE Sens. J., 15(2), pp. 809-818 (2015).
32. Kohler, M.D., Hao, S., Mishra, N. et al. ShakeNet:
A portable wireless sensor network for instrumenting
large civil structures", Tech. Rep. 2015-1134, U.S.
Geol. Survey, Los Angeles, CA, USA, p. 31 (2015).
33. Ozdagli, A.I., Liu, B., and Moreu, F. Low-cost,
ecient wireless intelligent sensors (LEWIS) measuring
real-time reference-free dynamic displacements",
Mech. Syst. Signal Pr., 107, pp. 343-356 (2018).
34. Zhu, L., Fu, Y., Chow, R. et al. Development of a
high-sensitivity wireless accelerometer for structural
health monitoring", Sensors, 18, pp. 1-16 (2018).
35. Voutetaki, M.E., Papadopoulos, N.A., Angeli, G.M.
et al. Investigation of a new experimental method
for damage assessment of RC beams failing in shear
using piezoelectric transducers", Eng. Struct., 114,
pp. 226-240 (2016).
36. Gu, H., Zhao, Y., and Wang, M.L. A wireless
smart PVDF sensor for structural health monitoring",
Struct. Control Hlth., 12(3-4), pp. 329-343
37. Wang, R.L., Gu, H., and Song, G. Active sensing
based bolted structure health monitoring using piezoceramic
transducers", Int. J. Distrib. Sens. N., 9(11),
583205 (6 pages) (2013).
38. Karayannis, C.G., Chalioris, C.E., Angeli, G.M. et al.
Experimental damage evaluation of reinforced concrete
steel bars using piezoelectric sensors", Constr.
Build. Mater., 105, pp. 227-244 (2016).
39. Yan, S., Wu, J., Sun, W. et al. Development and
application of structural health monitoring system
based on piezoelectric sensors", Int. J. Distrib. Sens.
N., 9(11), 270927 (12 pages) (2013).
40. Oh, B.K., Kim, K.J., Kim, Y. et al. Evolutionary
learning based sustainable strain sensing model for
structural health monitoring of high-rise buildings",
Appl. Soft Comput., 58, pp. 576-585 (2017).
41. Choi, H., Choi, S., and Cha, H. Structural health
monitoring system based on strain gauge enabled
wireless sensor nodes", In Proceedings of the 5th IEEE
International Conference on Networked Sensing Systems,
Kanazawa, Japan, pp. 211-214 (2008).
42. Liu, Y., Zhang, S., and Yang, C. Probability baseline
of nite element model of bridges under environmental
temperature changes", Comput-Aided Civ. Inf.,
32(7), pp. 581-598 (2017).
43. Enckell, M., Andersen, J.E., Glisic, B. et al. New
and emerging technologies in structural health monitoring:
Part i. Civil and environmental engineering",
Handbook of Measurement in Science and Engineering;
Kutz, M., Ed., John Wiley and Sons, Hoboken,
N.J., USA (2013).
44. Xia, Y., Zhang, P., Ni, Y.Q. et al. Deformation
monitoring of a super-tall structure using real-time
strain data", Eng. Struct., 67, pp. 29-38 (2014).
45. Fu, C.C. and Zhang, N. Investigation of bridge expansion
joint failure using eld strain measurement",
J. Perform. Constr. Fac., 25(4), pp. 309-316 (2010).
46. Bell, E.S., Lefebvre, P.J., Sanayei, M. et al. Objective
load rating of a steel-girder bridge using structural
modeling and health monitoring", J. Struct.
Eng., 139(10), pp. 1771-1779 (2013).
47. Seo, J., Hosteng, T.K., Phares, B.M. et al. Live-load
performance evaluation of historic covered timber
bridges in the United States", J. Perform. Constr.
Fac., 30(4), 04015094 (13 pages) (2016).
48. Bischo , R., Meyer, J., Enochsson, O. et al. Eventbased
strain monitoring on a railway bridge with a
wireless sensor network", In Proceedings of the 4th
International Conference on Structural Health Monitoring
of Intelligent Infrastructure, Zurich, Switzerland,
pp. 1-8 (2009).
49. Hu, X., Wang, B., and Ji, H. A wireless sensor
network-based structural health monitoring system
for highway bridges", Comput-Aided Civ. Inf., 28(3),
pp. 193-209 (2013).
J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2913{2925 2923
50. Moreu, F., Kim, R.E., and Spencer Jr, B.F. Railroad
bridge monitoring using wireless smart sensors",
Structural Control and Health Monitoring, 24(2),
e1863 (2017).
51. Wang, J.F., Xu, Z.Y., Fan, X.L. et al. Thermal
e ects on curved steel box girder bridges and their
countermeasures", J. Perform. Constr. Fac., 31(2),
04016091 (12 pages) (2017).
52. Kim, H. and Adeli, H. Wind-induced motion control
of 76-story benchmark building using the hybrid
damper-tuned liquid column damper system", J.
Struct. Eng., 131(12), pp. 1794-1802 (2005).
53. Wang, N. and Adeli, H. Robust vibration control
of wind-excited highrise building structures", J. Civ.
Eng. Manag., 21(8), pp. 967-976 (2015).
54. Mesquita, E., Arede, A., Pinto, N., et al. Long-term
monitoring of a damaged historic structure using a
wireless sensor network", Eng. Struct., 161, pp. 108-
117 (2018).
55. Yarnold, M.T., Moon, F.L., and Emin Aktan, A.
Temperature-based structural identi cation of longspan
bridges", J. Struct. Eng., 141(11), 04015027 (10
pages) (2015).
56. Park, S.W., Park, H.S., Kim, J.H. et al. 3D displacement
measurement model for health monitoring
of structures using a motion capture system", Meas.,
59, pp. 352-362 (2015).
57. Park, K., Torbol, M., and Kim, S. Vision-based
natural frequency identi cation using laser speckle
imaging and parallel computing", Comput-Aided Civ.
Inf., 33(1), pp. 51-63 (2018).
58. Luo, L. and Feng, M.Q. Edge-enhanced matching
for gradient-based computer vision displacement measurement",
Comput-Aided Civ. Inf., 33(12), pp. 1-22
59. Zhang, A., Wang, K.C., Li, B. et al. Automated
pixel-level pavement crack detection on 3D asphalt
surfaces using a deep-learning network", Comput-
Aided Civ. Inf., 32(10), pp. 805-819 (2017).
60. Liu, Q., Wang, B., and Zhu, Y. Short-term trac
speed forecasting based on attention convolutional
neural network for arterials", Comput-Aided Civ. Inf.,
33(11), pp. 999-1016 (2018).
61. Wong, K.Y. and Ni, Y.Q. Structural health monitoring
of cable-supported bridges in Hong Kong",
In, V.M. Karbhari and F. Ansari, Structural Health
Monitoring of Civil Infrastructure Systems, Woodhead
Publishing, Cambridge, UK (2009).
62. Wu, J., Yuan, S., Ji, S. et al. Multi-agent system
design and evaluation for collaborative wireless sensor
network in large structure health monitoring", Expert
Syst. Appl., 37(3), pp. 2028-2036 (2010).
63. Herrasti, Z., Val, I., Gabilondo, I. et al. Wireless sensor
nodes for generic signal conditioning: Application
to structural health monitoring of wind turbines",
Sensor Actuat. A-Phys., 247, pp. 604-613 (2016).
64. Ortega-Zamorano, F., Jerez, J.M., Gomez, I. et al.
Layer multiplexing FPGA implementation for deep
back-propagation learning", Integr. Comput-Aid E.,
24(2), pp. 171-185 (2017).
65. Nagayama, T. and Spencer Jr, B.F., Structural Health
Monitoring Using Smart Sensors, Newmark Structural
Engineering Laboratory, University of Illinois
at Urbana-Champaign (2007).
66. Adams, L. and Marketing, S. Choosing the right
architecture for real-time signal processing designs",
Texas Instruments, Document Number SPRA879
67. Chen, B. and Liu, W. Mobile agent computing
paradigm for building a
exible structural health
monitoring sensor network", Comput-Aided Civ. Inf.,
25(7), pp. 504-516 (2010).
68. Chen, B. and Liu, W. A high computational power
wireless sensor network for distributed structural
health monitoring", Int. J. Sens. Netw., 11(3), pp.
137-147 (2012).
69. Gutierrez Soto, M. and Adeli, H. Multi-agent replicator
controller for sustainable vibration control of
smart structures", J. Vibroeng., 19(6), pp. 4300-4322
70. Zhou, D., Ha, D.S., and Inman, D.J. Ultra lowpower
active wireless sensor for structural health
monitoring", Smart Struct. Syst., 6(5-6), pp. 675-687
71. Zhou, D., Kong, N., Ha, D.S. et al. A selfpowered
wireless sensor node for structural health
monitoring", In Health Monitoring of Structural and
Biological Systems, International Society for Optics
and Photonics, San Diego, California, United States,
pp. 1-12 (2010).
72. Meyer, J., Bischo , R., Feltrin, G. et al. Wireless
sensor networks for long-term structural health monitoring",
Smart Struct. Syst., 6(3), pp. 263-275 (2010).
73. Bocca, M., Eriksson, L.M., Mahmood, A. et al. A
synchronized wireless sensor network for experimental
modal analysis in structural health monitoring",
Comput-Aided Civ. Inf., 26(7), pp. 483-499 (2011).
74. Araujo, A., Garca-Palacios, J., Blesa, J. et al. Wireless
measurement system for structural health monitoring
with high time-synchronization accuracy",
IEEE T. Instrum. Meas., 61(3), pp. 801-810 (2012).
75. Dragos, K. and Smarsly, K. A comparative review
of wireless sensor nodes for structural health monitoring",
In Proceedings of the 7th International Conference
on Structural Health Monitoring of Intelligent
Infrastructure, Turin, Italy, pp. 1-10 (2015).
76. Gurkan, K., Gurkan, G., and Dindar, A.A. Design
and realization of multi-channel wireless data
acquisition system for laboratory-scale experiments
on structural health monitoring", J. Meas. E., 6(1),
pp. 64-73 (2018).
2924 J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2913{2925
77. Girolami, A., Brunelli, D., and Benini, L. Low-cost
and distributed health monitoring system for critical
buildings", In 2017 IEEE Workshop on Environmental,
Energy, and Structural Monitoring Systems,
Milan, Italy, pp. 58-63 (2017).
78. Chen, F.C., Jahanshahi, M.R., Wu, R.T. et al. A
texture-based video processing methodology using
Bayesian data fusion for autonomous crack detection
on metallic surfaces", Comput-Aided Civ. Inf., 32(4),
pp. 271-287 (2017).
79. Harms, T., Sedigh, S., and Bastianini, F. Structural
health monitoring of bridges using wireless sensor
networks", IEEE Instru. Meas. Mag., 13(6), pp. 33-
36 (2010).
80. Nagayama, T., Sim, S.H., Miyamori, Y. et al. Issues
in structural health monitoring employing smart sensors",
Smart Struct. Syst., 3(3), pp. 299-320 (2007).
81. Casciati, S. and Chen, Z. A multi-channel wireless
connection system for structural health monitoring
applications", Struct. Control Hlth., 18(5), pp. 588-
600 (2011).
82. Kypris, O. and Markham, A. 3-D displacement
measurement for structural health monitoring using
low-frequency magnetic elds", IEEE Sens. J., 17(4),
pp. 1165-1174 (2017).
83. Liu, L. and Yuan, F.G. Wireless sensors with
dual-controller architecture for active diagnosis in
structural health monitoring", Smart Mater. Struct.,
17(2), 025016 (13 pages) (2008).
84. Cigada, A., Moschioni, G., Vanali, M. et al. The
measurement network of the San Siro Meazza Stadium
in Milan: origin and implementation of a new
data acquisition strategy for structural health monitoring",
Exp. Techniques, 34(1), pp. 70-81 (2010).
85. Engel, A., Liebig, B., and Koch, A. Energy-ecient
heterogeneous recon gurable sensor node for distributed
structural health monitoring", In Conference
on Design and Architectures for Signal and Image
Processing, Karlsruhe, Germany, pp. 1-8 (2012).
86. Aranguren, G., Monje, P.M., Cokonaj, V. et al.
Ultrasonic wave-based structural health monitoring
embedded instrument", Rev. Sci. Instrum., 84(12),
125106 (7 pages) (2013).
87. Nguyen, T., Chan, T.H., Thambiratnam, D.P. et al.
Development of a cost-e ective and
exible vibration
DAQ system for long-term continuous structural
health monitoring", Mech. Syst. Signal Pr., 64, pp.
313-324 (2015).
88. Bao, Y., Yu, Y., Li, H. et al. Compressive sensingbased
lost data recovery of fast-moving wireless sensing
for structural health monitoring", Struct. Control
Hlth., 22(3), pp. 433-448 (2015).
89. Miranda-Vega, J.E., Flores-Fuentes, W., Sergiyenko,
O. et al. Optical cyber-physical system embedded on
an FPGA for 3D measurement in structural health
monitoring tasks", Microprocess. Microsy., 56, pp.
121-133 (2018).
90. Adeli, H. and Kamal, O., Parallel Processing in Structural
Engineering, Elsevier Applied Science, London
91. Adeli, H. and Kumar, S., Distributed Computer-Aided
Engineering for Analysis, Design, and Visualization,
CRC Press, Boca Raton, Florida (1999).
92. Adeli, H. and Soegiarso, R., High-Performance Computing
in Structural Engineering, CRC Press, Boca
Raton, Florida (1999).
93. Lynch, J.P. An overview of wireless structural health
monitoring for civil structures", Philos. T. Roy Soc.
A, 365(1851), pp. 345-372 (2007).
94. Mascarenas, D.D., Flynn, E.B., Todd, M.D. et al.
Development of capacitance-based and impedancebased
wireless sensors and sensor nodes for structural
health monitoring applications", J. Sound Vib.,
329(12), pp. 2410-2420 (2010).
95. Chae, M.J., Yoo, H.S., Kim, J.Y. et al. Development
of a wireless sensor network system for suspension
bridge health monitoring", Automat. Constr., 21, pp.
237-252 (2012).
96. Rice, J.A., Mechitov, K., Sim, S.H. et al. Flexible
smart sensor framework for autonomous structural
health monitoring", Smart Struct. Syst., 6(5-6), pp.
423-438 (2010).
97. Hackmann, G., Guo, W., Yan, G. et al. Cyberphysical
codesign of distributed structural health
monitoring with wireless sensor networks", IEEE T.
Parall Distr, 25(1), pp. 63-72 (2014).
98. Lee, Y., Blaauw, D., and Sylvester, D. Ultralow
power circuit design for wireless sensor nodes for
structural health monitoring", Proc. IEEE, 104(8),
pp. 1529-1546 (2016).
99. Hasni, H., Jiao, P., Alavi, A.H. et al. Structural
health monitoring of steel frames using a network
of self-powered strain and acceleration sensors: A
numerical study", Automat. Constr., 85, pp. 344-357
100. Bhuiyan, M.Z.A., Wang, G., Cao, J. et al. Deploying
wireless sensor networks with fault-tolerance
for structural health monitoring", IEEE T. Comput,
64(2), pp. 382-395 (2015).
101. Bougoudis, I., Demertzis, K., and Iliadis, L. Fast
and low cost prediction of extreme air pollution values
with hybrid unsupervised learning", Integr. Comput-
Aid E., 23(2), pp. 115-127 (2016).
102. Palomo, E.J. and Lopez-Rubio, E. Learning topologies
with the growing neural forest", Int. J. Neural
Syst., 26(3), 1650019 (21 pages) (2016).
103. Mu, H.Q. and Yuen, K.V. Ground motion prediction
equation development by heterogeneous Bayesian
learning", Comput-Aided Civ. Inf., 31(10), pp. 761-
776 (2016).
104. Castillo, E., Grande, Z., Mora, E. et al. Proactive,
backward analysis and learning in road probabilistic
Bayesian network models", Comput-Aided Civ. Inf.,
32(10), pp. 820-835 (2017).
J.P. Amezquita-Sanchez et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2913{2925 2925
105. Zhang, Y., Wang, Y., Jin, J. et al. Sparse Bayesian
learning for obtaining sparsity of EEG frequency
bands based feature vectors in motor imagery classi
cation", Int. J. Neural Syst., 27(2), 1650032 (13
pages) (2017).
106. Nashnush, E. and Vadera, S. Learning cost-sensitive
Bayesian networks via direct and in-direct methods",
Integr. Comput-Aid E., 24(1), pp. 17-26 (2017).
107. Ortiz-Garcia, A., Munilla, J., Gorriz, J.M. et al.
Ensembles of deep learning architectures for the
early diagnosis of Alzheimers disease", Int. J. Neural
Syst., 26(7), 1650025 (23 pages) (2016).
108. Koziarski, M. and Cyganek, B. Image recognition
with deep neural networks in presence of noise -
dealing with and taking advantage of distortions",
Integr. Comput-Aid E., 24(4), pp. 337-350 (2017).
109. Cha, Y.J., Choi, W., and Buyukozturk, O. Deep
learning-based crack damage detection using convolutional
neural networks", Comput-Aided Civ. Inf.,
32(5), pp. 361-378 (2017).
110. Ra ei, M.H., Khushefati, W.H., Demirboga, R. et
al. Supervised deep restricted Boltzmann machine
for estimation of concrete compressive strength", ACI
Mater. J., 114(2), pp. 237-244 (2017).
111. Morabito, F.C., Campolo, M., Mammone, N. et
al. Deep learning representation from electroencephalography
of early-stage Creutzfeldt-Jakob disease
and features for di erentiation from rapidly
progressive dementia", Int. J. Neural Syst., 27(2),
1650039 (15 pages) (2017).
112. Ahmadlou, M. and Adeli, H. Enhanced probabilistic
neural network with local decision circles: a robust
classi er", Integr. Comput-Aid E., 17(3), pp. 197-210
113. Zeinalia, Y. and Story, B. Competitive probabilistic
neural network", Integr. Comput-Aid E., 24(2), pp.
105-118 (2017).
114. Ra ei, M.H. and Adeli, H. A new neural dynamic
classi cation algorithm", IEEE T. Neur. Net. Lear.,
28(12), pp. 3074-3083 (2017).