References:
[1] Timoshenko, S.P. and S. Woinowsky-Krieger, “Theory of plates and shells”. McGraw-hill (1959).
[2] Hughes, T.J. and T. Tezduyar, “Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element”, Journal of applied mechanics. 48(3): p. 587-596 (1981).
[3] Tanaka, M. and A. Herein, “A boundary element method applied to the elastic bending problem of stiffened plates”, WIT Transactions on Modelling and Simulation. 19 (1970).
[4] Qian, L., R. Batra, and L. Chen, “Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method”, Composites Part B: Engineering. 35(6): p. 685-697 (2004).
[5] Chu, F., L. Wang, Z. Zhong, and J. He, “Hermite radial basis collocation method for vibration of functionally graded plates with in-plane material inhomogeneity”, Computers & Structures. 142: p. 79-89 (2014).
[6] Chu, F., J. He, L. Wang, and Z. Zhong,“Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity”, Engineering Analysis with Boundary Elements. 65: p. 112-125 (2016).
[7] Long, S. and S. Atluri, “A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate”, Computer Modeling in Engineering and Sciences. 3(1): p. 53-64 (2002).
[8] Buhmann, M.D., “Radial basis functions: theory and implementations”. Vol. 12. Cambridge university press (2003).
[9] Hamzehei Javaran, S. and N. Khaji, “Dynamic analysis of plane elasticity with new complex Fourier radial basis functions in the dual reciprocity boundary element method”, Applied Mathematical Modelling. 38(14): p. 3641-3651 (2014).
[10] Hamzeh Javaran, S., N. Khaji, and H. Moharrami, “A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis”, Engineering Analysis with Boundary Elements. 35(1): p. 85-95 (2011).
[11] Khaji, N. and S. Hamzehei Javaran, “New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method”, Engineering Analysis with Boundary Elements. 37(2): p. 260-272 (2013).
[12] Hamzeh Javaran, S., N. Khaji, and A. Noorzad, “First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method”, Acta mechanica. 218(3-4): p. 247-258 (2011).
[13] Rashed, Y.F., “Transient dynamic boundary element analysis using Gaussian-based mass matrix”, Engineering analysis with boundary elements. 26(3): p. 265-279 (2002).
[14] Agnantiaris, J., D. Polyzos, and D. Beskos, “Some studies on dual reciprocity BEM for elastodynamic analysis”, Computational Mechanics. 17(4): p. 270-277 (1996).
[15] Chen, C., “The method of fundamental solutions for non‐linear thermal explosions”, International Journal for Numerical Methods in Biomedical Engineering. 11(8): p. 675-681 (1995).
[16] Rashed, Y.F., “BEM for dynamic analysis using compact supported radial basis functions”, Computers & structures. 80(16): p. 1351-1367 (2002).
[17] Samaan, M.F., Y.F. Rashed, and M.A. Ahmed, “The dual reciprocity method applied to free vibrations of 2D structures using compact supported radial basis functions”, Computational Mechanics. 41(1): p. 85-105 (2007).
[18] Wang, L., “Radial basis functions methods for boundary value problems: Performance comparison”, Engineering Analysis with Boundary Elements. 84: p. 191-205 (2017).
[19] Samaan, M.F. and Y.F. Rashed, “Free vibration multiquadric boundary elements applied to plane elasticity”, Applied Mathematical Modelling. 33(5): p. 2421-2432 (2009).
[20] Hamzehei Javaran, S. and N. Khaji, “Inverse Multiquadric (IMQ) function as radial basis function for plane dynamic analysis using dual reciprocity boundary element method”, 15th World Conference on Earthquake Engineering, Lisboa, Portugal (2012).
[21] Hamzehei Javaran, S. and S. Shojaee, “The solution of elasto static and dynamic problems using the boundary element method based on spherical Hankel element framework”, International Journal for Numerical Methods in Engineering.
[22] Farmani, S., M. Ghaeini‐Hessaroeyeh, and S. Hamzehei Javaran, “The improvement of numerical modeling in the solution of incompressible viscous flow problems using finite element method based on spherical Hankel shape functions”, International Journal for Numerical Methods in Fluids. 87(2): p. 70-89 (2018).
[23] Hamzehei‐Javaran, S. and S. Shojaee, “Improvement of numerical modeling in the solution of static and transient dynamic problems using Finite Element Method based on spherical Hankel shape functions”, International Journal for Numerical Methods in Engineering. (First published: 16 May 2018, doi:10.1002/nme.5842)
[24] Wang, J. and G. Liu, “On the optimal shape parameters of radial basis functions used for 2-D meshless methods”, Computer methods in applied mechanics and engineering. 191(23): p. 2611-2630 (2002).
[25] Bhatti, M.A., “Advanced topics in finite element analysis of structures: with Mathematica and MATLAB computations”. John Wiley & Sons, Inc. (2006).
[26] Ferreira, A.J., “MATLAB codes for finite element analysis: solids and structures”. Vol. 157. Springer Science & Business Media (2008).
[27] Liew, K., Y. Xiang, and S. Kitipornchai, “Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions”, Computers & structures. 49(1): p. 1-29 (1993).
[28] Hinton, E., “Numerical methods and software for dynamic analysis of plates and shells”. Swansea: Pineridge Press (1988).
[29] Liew, K., et al., “Vibration of thick skew plates based on Mindlin shear deformation plate theory”, Journal of Sound and Vibration. 168(1): p. 39-69 (1993).
[30] Kitipornchai, S., et al., “A global approach for vibration of thick trapezoidal plates”, Computers & structures. 53(1): p. 83-92 (1994).
[31] Hosseini-Hashemi, S., K. Khorshidi, and M. Amabili, “Exact solution for linear buckling of rectangular Mindlin plates”, Journal of Sound and Vibration. 315(1): p. 318-342 (2008).