References:
1. Hamdan, S. and Cheaitou, A. Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach", Comput. Oper. Res., 81, pp. 282{304 (2017). 2. Govindan, K., Rajendran, S., Sarkis, J., et al. Multi criteria decision making approaches for green supplier evaluation and selection: a literature review", J. Clean. Prod., 98, pp. 66{83 (2015). 3. Guo, C. and Li, X. A multi-echelon inventory system with supplier selection and order allocation under stochastic demand", Int. J. Prod. Econ., 151, pp. 37{ 47 (2014). 4. Kannan, D., Khodaverdi, R., Olfat, L., et al. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain", J. Clean. Prod., 47, pp. 355{367 (2013). 5. Pazhani, S., Ventura, J.A., and Mendoza, A. A serial inventory system with supplier selection and order quantity allocation considering transportation costs", Appl. Math. Model., 40(1), pp. 612{634 (2016).6. Ballou, R.H., Business Logistics Management. Upper Saddle River, NY Prentice Hall (1992).7. Mansini, R., Savelsbergh, M.W.P., and Tocchella, B. The supplier selection problem with quantity discounts and truckload shipping", Omega, 40(4), pp. 445{455 (2012).8. Taleizadeh, A.A., Stojkovska, I., and Pentico, D.W. An economic order quantity model with partial backordering and incremental discount", Comput. Indust. Eng., 82, pp. 21{32 (2015). 9.
Ayhan, M.B. and Kilic, H.S. A two stage approach for supplier selection problem in multi-item/multisupplier environment with quantity discounts", Comput. Indust. Eng., 85, pp. 1{12 (2015).10. Jimenez, M., Arenas, M., Bilbao, A., et al. Linear programming with fuzzy parameters: an interactive method resolution", Eur. J. Oper. Res., 177(3), pp. 1599{1609 (2007).11. Dahel, N.-E. Vendor selection and order quantity allocation in volume discount environments", Suppl. Chain Manag.: Int. J., 8(4), pp. 335{342 (2003). 12. Demirtas, E.A. and Ustun, O. An integrated multiobjective decision making process for supplier selection and order allocation", Omega, 36, pp. 76{90 (2008). 13. Xia, W. and Wu, Z. Supplier selection with multiple criteria in volume discount environments", Omega, 35(5), pp. 494{504 (2007). 14. Burke, G.J., Carrillo, J., and Vakharia, A.J. Heuristics for sourcing from multiple suppliers with alternative quantity discounts", Eur. J. Oper. Res., 186(1), pp. 317{329 (2008). 15. Kokangul, A. and Susuz, Z. Integrated analytical hierarch process and mathematical programming to supplier selection problem with quantity discount", Appl. Math. Model., 33(3), pp. 1417{1429 (2009). 16. Amid, A., Ghodsypour, S.H., and O'Brien, C. A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply chain", Int. J. Prod. Econ., 121(2), pp. 323{ 332 (2009). 17. Wang, T.-Y. and Yang, Y.-H. A fuzzy model for supplier selection in quantity discount environments", Expert Syst. Appl., 36(10), pp. 12179{12187 (2009). 18. Ebrahim, R.M., Razmi, J., and Haleh, H. Scatter search algorithm for supplier selection and order lot sizing under multiple price discount environment", Adv. Eng. Soft., 40(9), pp. 766{776 (2009). 19. Razmi, J. and Maghool, E. Multi-item supplier selection and lot-sizing planning under multiple price discounts using augmented e-constraint and Tchebyche_ method", Int. J. Adv. Manuf. Technol., 49(1{4), pp. 379{392 (2010). 20. Kamali, A., Fatemi-Ghomi, S., and Jolai, F. A multiobjective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain", Comput. Math. Appl., 62(8), pp. 3251{ 3269 (2011). 492 M.A. Sobhanolahi et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 481{493 21. Zhang, J.L. and Zhang, M.Y. Supplier selection and purchase problem with fixed cost and constrained order quantities under stochastic demand", Int. J. Prod. Econ., 129(1), pp. 1{7 (2011). 22. Lee, A.H.I., Kang, H.-Y., Lai, C.-M., et al. An integrated model for lot sizing with supplier selection and quantity discounts", Appl. Math. Model., 37(7), pp. 4733{4746 (2013). 23. Moghaddam, K.S. Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty", Expert Syst. Appl., 42, pp. 6237{6254 (2015). 24. Bohner, C. and Minner, S. Supplier selection under failure risk, quantity and business volume discounts", Comput. Indust. Eng., 104, pp. 145{155 (2017). 25. C_ ebi, F. and Otay, _I. A two-stage fuzzy approach for supplier evaluation and order allocation problem with quantity discounts and lead time", Inf. Sci., 339, pp. 143{157 (2016). 26. Hamdan, S. and Cheaitou, A. Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability", Comput. Indust. Eng., 110, pp. 573{589 (2017). 27. Ranjbar Tezenji, F., Mohammadi, M., Pasandideh, S.H.R., et al. An integrated model for supplier location-selection and order allocation under capacity constraints in an uncertain environment", Sci. Iran., E, 23(6), pp. 3009{3025 (2016). 28. Jim_enez, M. and Bilbao, A. Pareto-optimal solutions in fuzzy multi-objective linear programming", Fuzzy Set. Syst., 160(18), pp. 2714{2721 (2009). 29. Sakawa, M., Fuzzy Sets and Interactive Multiobjective Optimization, Springer Science & Business Media (2013). 30. Tiwari, R.N., Dharmar, S., and Rao, J. R. Fuzzy goal programming-an additive model", Fuzzy Set. Syst., 24(1), pp. 27{34 (1987). 31. Chen, L.H. and Tsai, F.C. Fuzzy goal programming with di_erent importance and priorities", Eur. J. Oper. Res., 133(3), pp. 548{556 (2001). 32. Wu, Y.K. and Guu, S.M. A compromise model for solving fuzzy multiple objective linear programming problems", J. Chinese Ins. Indust. Eng., 18(5), pp. 87{93 (2001). 33. Akoz, O. and Petrovic, D. A fuzzy goal programming method with imprecise goal hierarchy", Eur. J. Oper. Res., 181(3), pp. 1427{1433 (2007). 34. Lee, E.S. and Li, R.J. Fuzzy multiple objective programming and compromise programming with Pareto optimum", Fuzzy Set. Syst., 53(3), pp. 275{288 (1993). 35. Arikan, F. A fuzzy solution approach for multi objective supplier selection", Expert Syst. Appl., 40(3), pp. 947{952 (2013). 36. Li, X.Q., Zhang, B., and Li, H. Computing e_cient solutions to fuzzy multiple objective linear programming problems", Fuzzy Set. Syst., 157(10), pp. 1328{ 1332 (2006). 37. Erginel, N. and Gecer, A. Fuzzy multi-objective decision model for calibration supplier selection problem", Comput. Indust. Eng., 102, pp. 166{174 (2016). 38. Govindan, K., Darbari, J.D., Agarwal, V., et al. Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an ecoe _cient closed loop supply chain network", J. Clean. Prod., 165, pp. 1598{1619 (2017). 39. Zadeh, L.A. Fuzzy sets", Inf. Control, 8(3), pp. 338{ 353 (1965). 40. Alaei, S. and Khoshalhan, F. A hybrid culturalharmony algorithm for multi-objective supply chain coordination", Sci. Iran. E, 22(3), pp. 1227{1241 (2015). 41. Dubois, D., Kerre, E., Mesiar, R., et al. Fuzzy interval analysis", In: Dubois, D., Prade, H. (Eds.), Fundamentals of Fuzzy Sets, Kluwer, Massachusetts, pp. 483{561 (2000). 42. Yager, R.R. Ranking fuzzy subsets over the unit interval", In: Proc. of 17th IEEE Int. Conf. on Dec. Control, San Diego, CA, pp. 1435{1437 (1979). 43. Heilpern, S. The expected valued of a fuzzy number", Fuzzy Set. Syst., 47, pp. 81{86 (1992). 44. Deb, K., Agrawal, S., Pratap, A., et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II", In Int. Conf. on Parallel Prob. Solv. From Nature, pp. 849{858, Springer, Berlin, Heidelberg (2000). 45. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, 16, John Wiley & Sons (2001).