A novel fuzzy multi-objective method for supplier selection and order allocation problem using NSGA II

Document Type : Article


1 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

2 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran


This paper introduces a supplier selection and order allocation problem in a single-buyer-multi-supplier supply chain in which appropriate suppliers are selected and orders allocated to them. Transportation costs, quantity discount, fuzzy type uncertainty and some practical constraints are taken into account in the problem. The problem is formulated as a bi-objective model to minimize annual supply chain costs and to maximize the annual purchasing value. The fuzzy weights of suppliers, which are the output of one of the supplier evaluation methods, are considered in the second objective function. Then, we propose a novel fuzzy multi-objective programming method for obtaining Pareto solutions. The method is the extension of a single-objective method exist in the literature. This method is based on the decision maker's degree of satisfaction from each fuzzy objectives considering the fulfillment level of fuzzy constraints. In the proposed method, the problem remains multi-objective and, unlike existing methods, does not transformed into a single-objective model. At the last stage of proposed method, the fuzzy results are compared with an index, and decision maker can identify the appropriate or inappropriate solutions. To solve the problem, non-dominated sorting genetic algorithm (NSGA II) is designed and computational results are presented using numerical examples.


Main Subjects

1. Hamdan, S. and Cheaitou, A. Supplier selection  and order allocation with green criteria: An MCDM  and multi-objective optimization approach", Comput.  Oper. Res., 81, pp. 282{304 (2017).  2. Govindan, K., Rajendran, S., Sarkis, J., et al. Multi  criteria decision making approaches for green supplier  evaluation and selection: a literature review", J.  Clean. Prod., 98, pp. 66{83 (2015). 3. Guo, C. and Li, X. A multi-echelon inventory system  with supplier selection and order allocation under  stochastic demand", Int. J. Prod. Econ., 151, pp. 37{  47 (2014). 4. Kannan, D., Khodaverdi, R., Olfat, L., et al. Integrated  fuzzy multi criteria decision making method  and multi-objective programming approach for supplier  selection and order allocation in a green supply  chain", J. Clean. Prod., 47, pp. 355{367 (2013). 5. Pazhani, S., Ventura, J.A., and Mendoza, A. A serial  inventory system with supplier selection and order  quantity allocation considering transportation costs",  Appl. Math. Model., 40(1), pp. 612{634 (2016).6. Ballou, R.H., Business Logistics Management. Upper  Saddle River, NY Prentice Hall (1992).7. Mansini, R., Savelsbergh, M.W.P., and Tocchella, B.  The supplier selection problem with quantity discounts  and truckload shipping", Omega, 40(4), pp.  445{455 (2012).8. Taleizadeh, A.A., Stojkovska, I., and Pentico, D.W.  An economic order quantity model with partial backordering  and incremental discount", Comput. Indust.  Eng., 82, pp. 21{32 (2015). 9. 
Ayhan, M.B. and Kilic, H.S. A two stage approach  for supplier selection problem in multi-item/multisupplier  environment with quantity discounts", Comput.  Indust. Eng., 85, pp. 1{12 (2015).10. Jimenez, M., Arenas, M., Bilbao, A., et al. Linear  programming with fuzzy parameters: an interactive  method resolution", Eur. J. Oper. Res., 177(3), pp.  1599{1609 (2007).11.  Dahel, N.-E. Vendor selection and order quantity  allocation in volume discount environments", Suppl.  Chain Manag.: Int. J., 8(4), pp. 335{342 (2003). 12.  Demirtas, E.A. and Ustun, O. An integrated multiobjective  decision making process for supplier selection  and order allocation", Omega, 36, pp. 76{90 (2008).  13. Xia, W. and Wu, Z. Supplier selection with multiple  criteria in volume discount environments", Omega,  35(5), pp. 494{504 (2007).  14. Burke, G.J., Carrillo, J., and Vakharia, A.J. Heuristics  for sourcing from multiple suppliers with alternative  quantity discounts", Eur. J. Oper. Res., 186(1),  pp. 317{329 (2008).  15. Kokangul, A. and Susuz, Z. Integrated analytical  hierarch process and mathematical programming to  supplier selection problem with quantity discount",  Appl. Math. Model., 33(3), pp. 1417{1429 (2009).  16. Amid, A., Ghodsypour, S.H., and O'Brien, C. A  weighted additive fuzzy multiobjective model for the  supplier selection problem under price breaks in a  supply chain", Int. J. Prod. Econ., 121(2), pp. 323{  332 (2009).  17. Wang, T.-Y. and Yang, Y.-H. A fuzzy model for  supplier selection in quantity discount environments",  Expert Syst. Appl., 36(10), pp. 12179{12187 (2009).  18. Ebrahim, R.M., Razmi, J., and Haleh, H. Scatter  search algorithm for supplier selection and order lot  sizing under multiple price discount environment",  Adv. Eng. Soft., 40(9), pp. 766{776 (2009).  19. Razmi, J. and Maghool, E. Multi-item supplier selection  and lot-sizing planning under multiple price discounts  using augmented e-constraint and Tchebyche_  method", Int. J. Adv. Manuf. Technol., 49(1{4), pp.  379{392 (2010).  20. Kamali, A., Fatemi-Ghomi, S., and Jolai, F. A multiobjective  quantity discount and joint optimization  model for coordination of a single-buyer multi-vendor  supply chain", Comput. Math. Appl., 62(8), pp. 3251{  3269 (2011).  492 M.A. Sobhanolahi et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 481{493  21. Zhang, J.L. and Zhang, M.Y. Supplier selection and  purchase problem with fixed cost and constrained order  quantities under stochastic demand", Int. J. Prod.  Econ., 129(1), pp. 1{7 (2011).  22. Lee, A.H.I., Kang, H.-Y., Lai, C.-M., et al. An  integrated model for lot sizing with supplier selection  and quantity discounts", Appl. Math. Model., 37(7),  pp. 4733{4746 (2013).  23. Moghaddam, K.S. Fuzzy multi-objective model for  supplier selection and order allocation in reverse logistics  systems under supply and demand uncertainty",  Expert Syst. Appl., 42, pp. 6237{6254 (2015).  24. Bohner, C. and Minner, S. Supplier selection under  failure risk, quantity and business volume discounts",  Comput. Indust. Eng., 104, pp. 145{155 (2017).  25. C_ ebi, F. and Otay, _I. A two-stage fuzzy approach for  supplier evaluation and order allocation problem with  quantity discounts and lead time", Inf. Sci., 339, pp.  143{157 (2016).  26. Hamdan, S. and Cheaitou, A. Dynamic green supplier  selection and order allocation with quantity discounts  and varying supplier availability", Comput. Indust.  Eng., 110, pp. 573{589 (2017).  27. Ranjbar Tezenji, F., Mohammadi, M., Pasandideh,  S.H.R., et al. An integrated model for supplier  location-selection and order allocation under capacity  constraints in an uncertain environment", Sci. Iran.,  E, 23(6), pp. 3009{3025 (2016).  28. Jim_enez, M. and Bilbao, A. Pareto-optimal solutions  in fuzzy multi-objective linear programming", Fuzzy  Set. Syst., 160(18), pp. 2714{2721 (2009).  29. Sakawa, M., Fuzzy Sets and Interactive Multiobjective  Optimization, Springer Science & Business Media  (2013).  30. Tiwari, R.N., Dharmar, S., and Rao, J. R. Fuzzy goal  programming-an additive model", Fuzzy Set. Syst.,  24(1), pp. 27{34 (1987).  31. Chen, L.H. and Tsai, F.C. Fuzzy goal programming  with di_erent importance and priorities", Eur. J. Oper.  Res., 133(3), pp. 548{556 (2001).  32. Wu, Y.K. and Guu, S.M. A compromise model for  solving fuzzy multiple objective linear programming  problems", J. Chinese Ins. Indust. Eng., 18(5), pp.  87{93 (2001).  33. Akoz, O. and Petrovic, D. A fuzzy goal programming  method with imprecise goal hierarchy", Eur. J. Oper.  Res., 181(3), pp. 1427{1433 (2007).  34. Lee, E.S. and Li, R.J. Fuzzy multiple objective programming  and compromise programming with Pareto  optimum", Fuzzy Set. Syst., 53(3), pp. 275{288 (1993).  35. Arikan, F. A fuzzy solution approach for multi objective  supplier selection", Expert Syst. Appl., 40(3), pp.  947{952 (2013).  36. Li, X.Q., Zhang, B., and Li, H. Computing e_cient  solutions to fuzzy multiple objective linear programming  problems", Fuzzy Set. Syst., 157(10), pp. 1328{  1332 (2006).  37. Erginel, N. and Gecer, A. Fuzzy multi-objective decision  model for calibration supplier selection problem",  Comput. Indust. Eng., 102, pp. 166{174 (2016).  38. Govindan, K., Darbari, J.D., Agarwal, V., et al.  Fuzzy multi-objective approach for optimal selection  of suppliers and transportation decisions in an ecoe  _cient closed loop supply chain network", J. Clean.  Prod., 165, pp. 1598{1619 (2017).  39. Zadeh, L.A. Fuzzy sets", Inf. Control, 8(3), pp. 338{  353 (1965).  40. Alaei, S. and Khoshalhan, F. A hybrid culturalharmony  algorithm for multi-objective supply chain  coordination", Sci. Iran. E, 22(3), pp. 1227{1241  (2015).  41. Dubois, D., Kerre, E., Mesiar, R., et al. Fuzzy  interval analysis", In: Dubois, D., Prade, H. (Eds.),  Fundamentals of Fuzzy Sets, Kluwer, Massachusetts,  pp. 483{561 (2000).  42. Yager, R.R. Ranking fuzzy subsets over the unit  interval", In: Proc. of 17th IEEE Int. Conf. on Dec.  Control, San Diego, CA, pp. 1435{1437 (1979).  43. Heilpern, S. The expected valued of a fuzzy number",  Fuzzy Set. Syst., 47, pp. 81{86 (1992).  44. Deb, K., Agrawal, S., Pratap, A., et al. A fast  elitist non-dominated sorting genetic algorithm for  multi-objective optimization: NSGA-II", In Int. Conf.  on Parallel Prob. Solv. From Nature, pp. 849{858,  Springer, Berlin, Heidelberg (2000).  45. Deb, K., Multi-Objective Optimization Using Evolutionary  Algorithms, 16, John Wiley & Sons (2001).