Soret and Dufour effects on doubly diffusive convection of nanofluid over a wedge in the presence of thermal radiation and suction

Document Type : Article


1 Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia

2 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3 Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia


This paper is devoted to investigate the influences of thermal radiation, Dufour and Soret effects on doubly diffusive convective heat transfer of nanoliquid over a wedge in the presence of wall suction. The governing equations are transformed to nonlinear ordinary differential equations using similarity transformation. The resulting system is solved numerically using fourth-order Runge-Kutta-Gill method with shooting technique and Newton-Raphson method. The solutions are expressed in terms of velocity, temperature, solutal concentration and volume fraction profiles. The effects of pertinent parameters entering into the problem such as wedge angle, thermal radiation, Brownian motion, thermophoresis, Soret and Dufour numbers on the skin friction coefficient, local Nusselt number and local Sherwood number are discussed in detail.


Main Subjects

1.Buongiorno, J. Convective transport in nanouids", ASME J. Heat Transfer, 128, pp. 240-250 (2006).
2. Sivasankaran, S. and Pan, K.L. Natural convection of nanouids in a cavity with non-uniform temperature distributions on side walls", Numer. Heat Transfer A, 65, pp. 247-268 (2014).
3. Khorasanizadeh, H., Amani, J., and Nikfar, M. Effect of Brownian and thermophoretic di_usions of nanoparticles on non-equilibrium heat conduction in a nanouid layer with periodic heat ux", Sci. Iran. F, 19(6), pp. 1996-2003 (2012).
4. Sivasankaran, S., Aasaithambi, T., and Rajan, S. Natural convection of nanouids in a cavity with linearly varying wall temperature", Maejo Int. J. Sci. Tech., 4, pp. 468-482 (2010). R. Md. Kasmani et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2817{2826 2825 5. Abdul Hakeem, A.K., Vishnu Ganesh, N., and Ganga, B. Heat transfer of non-Darcy MHD ow of a nanouid over a stretching/shrinking surface in a thermally strati_ed medium with second order slip model", Scientia Iranica B, 22(6), pp. 2766-2784 (2015). 6. Mollamahdi, M., Abbaszadeh, M., and Sheikhzadeh, G.A. Analytical study of Al2O3-Cu/water micropolar hybrid nanouid in a porous channel with expanding/ contracting walls in the presence of magnetic _eld", Scientia Iranica B, 25(1), pp. 208-220 (2018). 7. Hayat, T., Ullah, I., Alsaedi, A., and Ahmad, B. Modeling tangent hyperbolic nanoliquid ow with heat and mass ux conditions", Eur. Phys. J. Plus, 132, p. 112 (2017). 8. Sheikholeslami, M. and Ganji, D.D. Magnetohydrodynamic ow in a permeable channel _lled with nanouid", Scientia Iranica B, 21(1), pp. 203-212 (2014). 9. Bhuvaneswari, M., Sivasankaran, S., and Kim, Y.J. Numerical study on double di_usive mixed convection with a Soret e_ect in a two-sided lid-driven cavity", Numer. Heat Transfer A, 59, pp. 543-560 (2011). 10. Kuznetsov, A.V. and Nield, D.A. Double-di_usive natural convective boundary-layer ow of a nanouid past a vertical plate", Int. J. Thermal Sci., 50, pp. 712-717 (2011). 11. Nield, D.A. and Kuznetsov, A.V. The Cheng- Minkowycz problem for the double-di_usive natural convective boundary layer ow in a porous medium saturated by a nanouid", Int. J. Heat Mass Transfer, 54, pp. 374-378 (2011). 12. Niranjan, H., Sivasankaran, S., and Bhuvaneswari, M. Chemical reaction, Soret and Dufour e_ects on MHD mixed convection stagnation point ow with radiation and slip condition", Scientia Iranica B, 24(2), pp. 698- 706 (2017). 13. Eswaramoorthi, S., Bhuvaneswari, M., Sivasankaran, S., and Rajan, S. Soret and Dufour e_ects on viscoelastic boundary layer ow over a stretching surface with convective boundary condition with radiation and chemical reaction", Scientia Iranica B, 23(6), pp. 2575-2586 (2016). 14. Pal, D. and Mondal, H. Soret-Dufour e_ects on hydromagnetic non-Darcy convective-radiative heat and mass transfer over a stretching sheet in porous medium with viscous dissipation and Ohmic heating", J. Appl. Fluid Mech., 7, pp. 513-523 (2014). 15. Hayat, T., Ullah, I., Muhammad, T., and Alsaedi, A. Radiative three-dimensional ow with Soret and Dufour e_ects", Int. J. Mech. Sci., 133, pp. 829-837 (2017). 16. Abdul Hakeem, A.K., Govindaraju, M., Ganga, B. and Kayalvizhi, M. Second law analysis for radiative MHD slip ow of a nanouid over a stretching sheet with nonuniform heat source e_ect", Scientia Iranica B, 23(3), pp. 1524-1538 (2016). 17. Ramly, N.A., Sivasankaran, S., and Noor, N.F.M. Zero and nonzero normal uxes of thermal radiative boundary layer ow of nanouid over a radially stretched surface", Scientia Iranica B, 24(6), pp. 2895- 2903 (2017). 18. Gha_arpasand, O. Natural convection and entropy generation of ultra_ne atmospheric aerosols in the presence of hydrodynamic partial slip and thermal radiation due to solar energy", Scientia Iranica B, 24(3), pp. 1686-1705 (2017). 19. Ahmed, S.E., Hussein, A.K., Mohammed, H.A., Adegun, I.K., Zhang, X., Kolsi, L., Hasanpour, A., and Sivasankaran, S. Viscous dissipation and radiation effects on MHD natural convection in a square enclosure _lled with a porous medium", Nucl. Eng. Des., 266, pp. 34-42 (2014). 20. Bhuvaneswari, M., Sivasankaran, S., and Kim, Y.J. Lie group analysis of radiation natural convection ow over an inclined surface in a porous medium with internal heat generation", J. Porous Media, 12, pp. 1155-1164 (2012). 21. Lee, J., Kandaswamy, P., Bhuvaneswari, M., and Sivasankaran, S. Lie group analysis of radiation natural convection heat transfer past an inclined porous surface", J. Mech. Sci. Tech., 22, pp. 1779-1784 (2008). 22. Das, S., Guchhait, S.K., and Jana, R.N. E_ects of Hall currents and radiation on unsteady MHD ow past a heated moving vertical plate", J. Appl. Fluid Mech., 7, pp. 683-692 (2014). 23. Nandy, S.K. and Pop, I. E_ects of magnetic _eld and thermal radiation on stagnation ow and heat transfer of nanouid over a shrinking surface", Int. Comm. Heat Mass Transfer, 53, pp. 50-55 (2014). 24. Hayat, T., Ullah, I., Alsaedi A., and Ahmad, B. Radiative ow of Carreau liquid in presence of Newtonian heating and chemical reaction", Results Phys., 7, pp. 715-722 (2017). 25. Hayat, T., Ullah, I., Ahmad, B., and Alsaedi A. MHD mixed convection ow of third grade liquid subject to non-linear thermal radiation and convective condition", Results Phys., 7, pp. 2804-2811 (2017). 26. Falkner, V.M. and Skan, S.W. Some approximate solutions of the boundary-layer equations", Phil. Mag., 12, pp. 865-896 (1931). 27. Hossain, M.A., Banu, N., and Nakayama, A. Non- Darcy forced convection boundary layer ow over a wedge embedded in a saturated porous medium", Numer. Heat Transfer A, 26, pp. 399-414 (1994). 28. Uddin, Z and Kumar, M. Hall and ion-slip e_ect on MHD boundary layer ow of a micro polar uid past a wedge", Sci. Iran. B, 20(3), pp. 467-476 (2013). 2826 R. Md. Kasmani et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2817{2826 29. Yih, K.A. Radiation e_ect on mixed convection over an isothermal wedge in porous media: The entire regime", Heat Transfer Eng., 22, pp. 26-32 (2001). 30. Watanabe, T., Funazaki, K., and Taniguchi, H. Theoretical analysis on mixed convection boundary layer ow over a wedge with uniform suction or injection", Acta Mechanica, 105, pp. 133-141 (1994). 31. Kasmani, R.M., Sivasankaran, S., and Siri, Z. E_ect of chemical reaction on convective heat transfer of boundary layer ow in nanouid over a wedge with heat generation/absorption and suction", J. Appl. Fluid Mech., 9(1), pp. 379-388 (2016). 32. Chamkha, A.J., Abbasbandy, S., Rashad, A.M., and Vajravelu, K. Radiation e_ects on mixed convection over a wedge embedded in a porous medium _lled with a nanouid", Transport Porous Med., 91, pp. 261-279 (2012). 33. Md Kasmani, R., Sivasankaran, S., Bhuvaneswari, M., and Hussein, A.K. Analytical and numerical study on convection of nanouid past a moving wedge with Soret and Dufour e_ects", Int. J. Numerical Methods Heat & Fluid Flow, 27(10), pp. 2333-2354 (2017).