Refrences:
1.Kumar, S. and Tariq, A. Steady state experimental investigation of thermal contact conductance between curvilinear contacts using liquid crystal thermography", Int. J. Therm. Sci., 118, pp. 53-68 (2017).
2. Shojaeefard, M.H. and Goudarzi, K. The numerical estimation of thermal contact resistance in contacting surfaces", Am. J. Appl. Sci., 5(11), pp. 1566-1571 (2008).
3. Wang, S., Xie, T., and Xie, H. Experimental study of the e_ects of the thermal contact resistance on the performance of thermoelectric generator", Appl. Therm. Eng., 130, pp. 847-853 (2018).
4. Seok, J., Kim, D., and Kim, S. Overall thermal conductance and thermal contact resistance in noinsulation REBCO magnet", IEEE Trans. Appl. Supercond., 28(3), pp.1-5 (2018). 5. Clausing, A.M. and Chao, B. Thermal contact resistance in a vacuum environment", J. Heat Transfer, 87(2), pp. 243-250 (1965). 6. Marotta, E.E., Fletcher, L.S., and Dietz, T.A. Thermal contact resistance modeling of non-at, roughened surfaces with non-metallic coatings", J. Heat Transfer, 123(1), pp. 11-23 (2001). 7. Mikic, B. and Rohsenow, W. Thermal contact resistance", DSR 74542-41, Mech. Eng. Department, MIT (1966). 8. Thomas, T. and Sayles, R. Random process analysis of e_ects of waviness on thermal contact resistance", ASME Conf. on Thermophys. Heat Transfer, pp. 674- 691 (1975). 9. Padilha, R.S. An analytical method to estimate spatially-varying thermal contact conductance using the reciprocity functional and the integral transform methods: Theory and experimental validation", Int. J. Heat Mass Transfer, 100, pp. 599-607 (2016). 10. Shojaeefard, M.H. and Goudarzi, K. The numerical estimation of thermal contact resistance in contacting surfaces", Am. J. Appl. Sci., 5(11), pp. 1566-1571 (2008). 11. Prasher, R. Acoustic mismatch model for thermal contact conductance of van der Waals contacts under static force", Nanoscale and Microscale Thermophys. Eng., 22(1), pp. 1-5 (2018). 12. Hemmat Esfe, M., Wongwises, S., Esfandeh, S., and Alirezaei, A. Development of a new correlation and post processing of heat transfer coe_cient and pressure drop of functionalized COOH MWCNT nanouid by arti_cial neural network", Curr. Nanosci., 14(2), pp. 104-112 (2018). 13. Hemmat Esfe, M., Ahmadi Nadooshan, A., Arshi, A., and Alirezaei, A. Convective heat transfer and pressure drop of aqua based TiO2 nanouids at different diameters of nanoparticles: Data analysis and modeling with arti_cial neural network", Physica E, 97, pp. 155-161 (2018). Shojaeefard and Tafazzoli Aghvami/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2865{2871 2871 14. Abdollahi, A. and Shams, M. Arti_cial neural network modeling of a deector in a grooved channel as well as optimization of its e_ective parameters", Heat Mass Transfer, 54(1), pp. 59-68 (2018). 15. Cook, G.E. Weld modeling and control using arti_cial neural networks", IEEE. Trans. Ind. Appl., 31(6), pp. 1484-1491 (1995). 16. Hojjat, M. Modeling heat transfer of non-Newtonian nanouids by using hybrid ANN-metaheuristic optimization algorithm", J. Part. Sci. Tech., 12(3), pp. 45-54 (2018). 17. Hemmat Esfe, M., Abbasian Arani, A.A., Sha_ei Badi, R., and Rejvani, M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT-SiO2/EG hybrid nanouid for higher heat transfer", J. Therm. Anal. Calorim., 131(3), pp. 2381- 2393 (2018). 18. Tafarroj, M.M. Arti_cial neural network modeling of nanouid ow in a microchannel heat sink using experimental data", Int. Commun. Heat Mass Transfer, 86, pp. 25-31 (2017). 19. Ghahdarijani, A.M., Hormozi, F., and Asl, A.H. Convective heat transfer and pressure drop study on nanouids in double-walled reactor by developing an optimal multilayer perceptron arti_cial neural network", Int. Commun. Heat Mass Transfer, 84, pp. 11- 19 (2017). 20. Rumelhart, D.E., McClelland, J.L., and Group, P.R. Parallel Distributed The MIT Press, Cambridge, MA (1986). The MIT Press, Cambridge, MA (1986).