Discharge and flow field simulation of open-channel sewer junction using artificial intelligence methods

Document Type : Article

Authors

Department of Civil Engineering, Razi University, Kermanshah, Iran

Abstract

One of the most important parameters in designing of sewer structures is the ability to accurately simulation the discharge and velocity field of them. Among the various sewer receiving inflow methods, open channel junctions are mostly occurring. Because of the separation and contraction zone that occur at the open channel junctions, the fluid flow has a complex behavior. Modeling is carried out by Radial Basis Function (RBF) neural network, Gene Expression Programming (GEP), and Multiple Non-Linear Regression (MNLR) methods. Finding the optimum situation for GEP and RBF models are done by examining the various mathematical and linking functions for GEP and different number of hidden neurons and spread amount for RBF. In order to use the models in practical situations, three equations were conducted by using the RBF, GEP, and MNLR methods in modeling the longitudinal velocity. Then, the surface integral of the presented equations is used to simulate the flow discharge. The results showed that the GEP and RBF method perform significantly better than the MNLR in open channel junction characteristics simulations. The GEP method has higher performance in modeling the longitudinal velocity field compare with the RBF. However, the RBF presented more reliable results on the discharge simulations.

Keywords

Main Subjects


Refrences:
1.Yen, B.C. Hydraulics of sewers", Adv. Hydrosci., 14, pp. 1-122 (1986).
2. Yekani Motlagh, Y., Nazemi, A.H., Sadraddini, A.A., Abbaspour, A., and Yekani Motlagh, S. Numerical investigation of the e_ects of combining sewer junction characteristics on the hydraulic parameters of ow in fully surcharged condition", Water. Environ. J., 27(3), pp. 301-316 (2013).
3. Mosley, M.P. An experimental study of channel con- uences", J. Geol., 84(5), pp. 535-562 (1976).
4. Ashmore, P. and Parker, G. Conuence scour in coarse braided streams", Water. Resource. Res., 19(2), pp. 392-402 (1983). 5. Best, J.L. and Reid, I. Separation zone at openchannel junctions", J. Hydraul. Eng., 110(11), pp. 1588-1594 (1984).
6. Biron, P., Roy, A., and Best, J. Turbulent ow structure at concordant and discordant open-channel conuences", Exp. Fluids., 21(6), pp. 437-446 (1996).
7. Biron, P., Best, J.L., and Roy, A.G. E_ects of bed discordance on ow dynamics at open channel conuences", J. Hydraul. Eng., 122(12), pp. 676-682 (1996).
8. Kumar Gurram, S., Karki, K.S., and Hager, W.H. Subcritical junction ow", J. Hydraul. Eng., 123(5), pp. 447-454 (1997).
9. Hsu, C.C., Wu, F.S., and Lee, W.J. Flow at 90_ equal-width open-channel junction", J. Hydraul. Eng., 124(2), pp. 186-191 (1998).
10. Ramamurthy, A.S. and Zhu, W. Combining ows in 90_ junctions of rectangular closed conduits", J. Hydraul. Eng., 123(11), pp. 1012-1019 (1997).
11. Weber, L.J., Schumate, E.D., and Mawer, N. Experiments on ow at a 90_ open-channel junction", J. Hydraul. Eng., 127(5), pp. 340-350 (2001).
12. Taylor, E.H. Flow characteristics at rectangular openchannel junctions", T. Am. Soc. Civ. Eng., 109(1), pp. 893-902 (1944).
13. Modi, P.N., Ariel, P.D., and Dandekar, M.M. Conformal mapping for channel junction ow", J. Hydraul. Div., 107(HY12, Proc. Paper 16763), pp. 1713-1733 (1981).
14. Hager, W.H. Transitional ow in channel junctions", J. Hydraul. Eng., 115(2), pp. 243-259 (1989).
15. Bradbrook, K.F., Biron, P.M., Lane, S.N., Richards, K.S., and Roy, A.G. Investigation of controls on secondary circulation in a simple conuence geometry using a three-dimensional numerical model", Hydrol. Proces., 12(8), pp. 1371-1396 (1998). 16. Huang, J., Weber, L.J., and Lai, Y.G. Threedimensional numerical study of ows in open-channel junctions", J. Hydraul. Eng., 128(3), pp. 268-280 (2002).
17. Shakibainia, A., Tabatabai, M.R.M., and Zarrati, A.R. Three-dimensional numerical study of ow structure in channel conuences", Can. J. Civil. Eng., 37(5), pp. 772-781 (2010).
18. Bonakdari, H., Lipeme-Kouyi, G., and Wang, X. Experimental validation of CFD modeling of multiphase ow through open channel conuence", World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, pp. 2176-2183 (2011).
19. Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivire, N., and Bertrand-Krajewski, J. Experiments and 3D simulations of ow structures 186 A.H. Zaji and H. Bonakdari/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 178{187 in junctions and their inuence on location of owmeters", Water. Sci. Technol., 66(6), pp. 1325 (2012).
20. Yang, Q.Y., Liu, T.H., Lu, W.Z., and Wang, X.K. Numerical simulation of conuence ow in open channel with dynamic meshes techniques", Adv. Mech. Eng., 5 (2013).
21. Shari_pour, M., Bonakdari, H., Zaji, A.H., and Shamshirband, S. Numerical investigation of flow _field and owmeter accuracy in open channel junctions", Eng. Appl. Comp. Fluid., 9(1), pp. 280-290 (2015).
22. Shari_pour, M., Bonakdari, H., and Zaji, A. Impact of the conuence angle on ow _eld and owmeter accuracy in open channel junctions", International Journal of Engineering-Transactions B: Applications, 28(8), pp. 1145 (2015).
23. Najafzadeh, M. and Bonakdari, H. Application of a neuro-fuzzy GMDH model for predicting the velocity at limit of deposition in storm sewers", Journal of Pipeline Systems Engineering and Practice, p. 06016003 (2016).
24. Najafzadeh, M., Balf, M.R., and Rashedi, E. Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models", Journal of Hydroinformatics, 18(5), pp. 867-884 (2016).
25. Kaydani, H., Najafzadeh, M., and Mohebbi, A. Wellhead choke performance in oil well pipeline systems based on genetic programming", Journal of Pipeline Systems Engineering and Practice, 5(3), p. 06014001 (2014).
26. Najafzadeh, M., Laucelli, D.B., and Zahiri, A. Application of model tree and evolutionary polynomial regression for evaluation of sediment transport in pipes", KSCE Journal of Civil Engineering, 21(5), pp. 1956-1963 (2016).
27. Najafzadeh, M., Tafarojnoruz, A., and Lim, S.Y. Prediction of local scour depth downstream of sluice gates using data-driven models", ISH Journal of Hydraulic Engineering, 23(2), pp. 195-202 (2017).
28. Kisi, O. and Cigizoglu, H.K. Comparison of di_erent ANN techniques in river ow prediction", Civ. Eng. Environ. Syst., 24(3), pp. 211-231 (2007).
29. Bilhan, O., Emin Emiroglu, M., and Kisi, O. Application of two different neural network techniques to lateral outow over rectangular side weirs located on a straight channel", Adv. Eng. Software., 41(6), pp. 831-837 (2010).
30. Azamathulla, H.M., Ahmad, Z., and Ab. Ghani, A. An expert system for predicting Manning's roughness coe_cient in open channels by using gene expression programming", Neural. Comput. Appl., 23(5), pp. 1343-1349 (2013).
31. Zaji, A.H. and Bonakdari, H. Application of arti_cial neural network and genetic programming models for estimating the longitudinal velocity _eld in open channel junctions", Flow. Meas. Instrum., 41, pp. 81-89 (2015).
32. Bonakdari, H. and Zaji, A.H. Open channel junction velocity prediction by using a hybrid self-neuron adjustable arti_cial neural network", Flow Measurement and Instrumentation, 49, pp. 46-51 (2016).
33. Broomhead, D.S. and Lowe, D. Radial basis functions, multi-variable functional interpolation and adaptive networks", Royal. Signals. Radar. Est. Memo., 4248 (1988).
34. Poggio, T. and Girosi, F. Regularization algorithms for learning that are equivalent to multilayer networks", Science, 247(4945), pp. 978-982 (1990).
35. Buhmann, M.D., Radial Basis Functions: Theory and Implementations, Cambridge University Press Cambridge (2003). 36. Kisi, O. The potential of di_erent ANN techniques in evapotranspiration modelling", Hydrol. Proces., 22(14), pp. 2449-2460 (2008).
37. Koza, J.R. Genetic programming as a means for programming computers by natural selection", Stat. Comput., 4(2), pp. 87-112 (1994).
38. Ferreira, C. Gene expression programming in problem solving", In Soft. Comput. Indust., pp. 635-653, Springer (2002). 39. Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems", Complex. Sys., 13(2), pp. 87-129 (2001).
40. Aytek, A. and Kisi, O. A genetic programming approach to suspended sediment modelling", J. Hydrol., 351(3-4), pp. 288-298 (2008).
41. Ab Ghani, A. and Md Azamathulla, H. Geneexpression programming for sediment transport in sewer pipe systems", J. Pipeline. Syst. Eng. Pract., 2(3), pp. 102-106 (2011).
42. Shiri, J. and Kisi, O. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth uctuations", Comput. Geosci., 37(10), pp. 1692-1701 (2011).
43. Onen, F. GEP prediction of scour around a side weir in curved channel", J. Environ. Eng. Landsc. Manage., 22(3), pp. 161-170 (2014).
44. Kisi, O., Dailr, A.H., Cimen, M., and Shiri, J. Suspended sediment modeling using genetic programming and soft computing techniques", J. Hydrol., 450-451, pp. 48-58 (2012).
45. Isel, S., Dufresne, M., Bardiaux, J.B., Fischer, M., and Vazquez, J. Computational uid dynamics based assessment of discharge-water depth relationships for combined sewer overows", Urban. Water. J., 11(8), pp. 631-640 (2014).
46. Regneri, M., Klepiszewski, K., Sei_ert, S., Vanrolleghem, P.A., and Ostrowski, M. Transport sewer model calibration by experimental generation of discrete discharges from individual CSO structures", iEMSs 2012 - Managing Resources of a Limited Planet: Proceedings of the 6th Biennial Meeting of the International Environmental Modelling and Software Society, pp. 3109-3116 (2012). A.H. Zaji and H. Bonakdari/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 178{187 187
47. Bonakdari, H. Simple method for the estimation of discharge by entropy in narrow compound sewers", Can. J. Civil. Eng., 39(3), pp. 339-343 (2012).
48. Fach, S., Sitzenfrei, R., and Rauch, W. Determining the spill ow discharge of combined sewer overows using rating curves based on computational uid dynamics instead of the standard weir equation", Water Sci. Technol., 60(12), pp. 3035-3043 (2009).
49. Oliveto, G. and Hager, W.H. Discharge measurement in circular sewer", J. Irrig. Drain. Eng., 123(2), pp. 138-140 (1997). 50. Payne, J.A. and Hedges, P.D. An evaluation of the impacts of discharges from surface water sewer outfalls", Water. Sci. Technol., 22(10-11), pp. 127-135 (1990).
Volume 26, Issue 1
Transactions on Civil Engineering (A)
January and February 2019
Pages 178-187
  • Receive Date: 13 December 2016
  • Revise Date: 23 June 2017
  • Accept Date: 29 August 2017