References:
1. Bhimaraddi, A. 'Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27(7), pp. 897-913 (1991).
2. Singh, V.K. and Panda, S.K. 'Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Walled Struct., 85, pp. 341-349 (2014).
3. Qatu, M.S. and Leissa, A.W. 'Effects of edge constraint upon shallow shell frequencies", Thin Walled Struct., 14(5), pp. 347-379 (1992).
4. Abe, A., Kobayashi, Y., and Yamada, G. 'Non-linear vibration characteristics of clamped laminated shallow shells", J. Sound Vib., 234(3), pp. 405-426 (2000).
5. Amabili, M. 'Non-linear vibrations of doubly curved shallow shells", Int. J. Non Linear Mech., 40, pp. 683- 710 (2005).
6. Shoshtari, A. and Razavi, S. 'Large-amplitude free vibration of magneto-electro-static curved panels", Scientia Iranica, 23(6), pp. 2606-2615 (2016).
7. Vafai, A., Mofid, M., and Estekanchi, H.E. 'Experimental study of prefabricated funicular shell units", Eng. Struct., 19(9), pp. 748-759 (1997).
8. Weber, J.W., Wu, K.C., and Vafai, A. 'Ultimate loads for shallow funicular concrete shells", Northwest Sci., 58(3), pp. 187-194 (1984).
9. Vafai, A. and Farshad, M. 'Theoretical and experimental study of prefabricated funicular shell units", Build. Environ., 14, pp. 209-216 (1979).
10. Elangovan, S. 'Analysis of funicular shells by the isoparametric finite element", Comput. Struct., 34(2), pp. 303-311 (1990).
11. Rajasekaran, S. and Sujatha, P. 'Configuration of deep funicular shells by boundary integral element method", Comput. Struct., 44(1/2), pp. 213-221 (1992).
12. Lakshmikandhan, K.N., Sivakumar, P., Jose, L.T., Sivasubramanian, K., Balasubramanian, S.R., and Saibabu, S. 'Parametric study on development, testing and evaluation of concrete funicular shells", International Journal of Engineering and Innovative Technology (IJEIT), 3(12), pp. 183-191 (2014).
13. Sivakumar, P., Manjunatha, K., and Harish, B.A. 'Experimental and FE analysis of funicular shells", International Journal of Engineering and Innovative Technology (IJEIT), 4(9), pp. 178-186 (2015).
14. Siddesh, T.M., Harish, B.A., and Manjunatha, K. 'Finite element analysis of funicular shells with rectangular plan ratio 1:0.7 under concentrated load using SAP2000", International Research Journal of Engineering and Technology (IRJET), 3(9), pp. 873-878 (2016).
15. Sachithanantham, P. 'Study of shallow funicular concrete shells of plan to rise ratio 1:2", International Journal of Biotech Trends and Technology (IJBTT), 2(3), pp. 53-64 (2012).
16. Tarunkumar, T. and Sachithanantham, P. 'Study on shallow funicular concrete shells over rectangular ground plan ratio 1:0.8", International Journal of Computer Trends and Technology (IJCTT), 3(6), pp. 29-49 (2012).
17. Sachithanantham, P. 'Study of geo-grid reinforced shallow funicular concrete shells subjected to ultimate loads", International Journal of Biotech Trends and Technology (IJBTT), 2(2), pp. 34-46 (2012).
18. Sachithanantham, P., Sankaran, S., and Elavenil, S. 'Study on shallow funicular concrete shells over rectangular ground plan ratio 1:0.6", International Journal of Computer Trends and Technology (IJCTT), 3(6), pp. 19-28 (2012).
19. Sachithanantham, P., Sankaran, S., and Elavenil, S. 'Study on shallow funicular concrete shells over rectangular ground plan ratio 1:0.9", International Journal of Emerging Technology and Advanced Engineering (IJETAE), 4(4), pp. 102-107 (2014).
20. Ramaswamy, G.S., Design and Construction of Concrete Shell Roofs, McGraw-Hill, New York, USA (1968).
21. Ventsel, E. and Krauthammer, T., Thin Plates and Shells, Theory, Analysis, and Applications, Marcel Dekker, New York, USA (2001).
22. Amabili, M. 'Effect of boundary conditions on nonlinear vibrations of circular cylindrical panels", J. Appl. Mech., 74, pp. 645-657 (2007).