References:
1. Ramanathan, R. "ABC inventory classification with multiple-criteria using weighted linear optimization", Comput. Oper. Res., 33, pp. 695-700 (2006).
2. Bhattacharya, A., Sarkar, B., and Mukherjee, S.K. "Distance-based consensus method for ABC analysis", Int. J. Prod. Res., 45, pp. 3405-3420 (2007).
3. Hwang, C.L. and Yoon, K., Multiple Attributes Decision Making Method and Application, Springer, Berlin (1981).
4. Zadeh, L. "The concept of a linguistic variable and its application to approximate reasoning", Part 1, Inform. Sciences, 8, pp. 199-249 (1975).
5. Hameed, I.A. "Using Gaussian membership functions for improving the reliability and robustness of stu dents' evaluation systems", Expert. Syst. Appl., 38, pp. 7135-7142 (2011).
6. Cherif, H. and Ladhari, T. "A novel multi-criteria inventory classification approach: artificial bee colony algorithm with VIKOR method", In: Czachorski T., Gelenbe E., Grochla K., Lent R. (Eds.), Computer and Information Sciences, Communications in Computer and Information Science, 659, Springer, Cham (2016).
7. Isen, E. and Boran, S. "A novel approach based on combining ANFIS, genetic algorithm and fuzzy cmeans methods for multiple criteria inventory classification", Arab. J. Sci. Eng., 43, pp. 3229-3239 (2018).
8. Lopez-Soto, D., Angel-Belloa, F., Yacoutb, S., and Alvarez, A. "A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem", Expert. Syst. Appl., 81, pp. 12- 21 (2017).
9. Zhou, P. and Fan, L. "A note on multi-criteria ABC inventory classification using weighted linear optimization", Eur. J. Oper. Res., 182, pp. 1488-1491 (2007).
10. Ng, W.L. "A simple classifier for multiple criteria ABC analysis", Eur. J. Oper. Res., 177, pp. 344-353 (2007).
11. Hadi-Vencheh, A. "An improvement to multiple criteria ABC inventory classification", Eur. J. Oper. Res., 201, pp. 962-965 (2010).
12. Torabi, S.A., Hatefi, S.M., and Saleck Pay, B. "ABC inventory classification in the presence of both quantitative and qualitative criteria", Comput. Ind. Eng., 63, pp. 530-537 (2012).
13. Hatefi, S.M., Torabi, S.A., and Bagheri, P. "Multicriteria ABC inventory classification with mixed quantitative and qualitative criteria", Int. J. Prod. Econ., 52, pp. 776-786 (2014).
14. Kaabi, H. and Jabeur K. "A new hybrid weighted optimization model for multi criteria ABC inventory classification", In Proceedings of the Second International Afro-European Conference for Industrial Advancement, Springer, pp. 261-270 (2016).
15. Cohen, M.A. and Ernst, R. "Multi-item classification and generic inventory stock control policies", Prod. Inv. Manage. J., 29, pp. 6-8 (1988).
16. Lei, Q., Chen, J., and Zhou, Q. "Multiple criteria inventory classification based on principle components analysis and neural network", Adv. Neural. Network., 3498, pp. 1058-1063 (2005).
17. Ghorabaee, M.K., Zavadskas, E.K., and Zenonas Turskis, L.O. "Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS)", Informatica., 26, pp. 435-451 (2015).
18. Raja, A.M.L., Ai, J., and Astanti, R.D. "A clustering classification of spare parts for improving inventory policies", IOP Conf. Series: Materials Science and Engineering, 114, Kuala Lumpur, Malaysia (2016).
19. Chen,Y., Li, K.W., Kilgour, D.M., and Hipel, K.W. "A case-based distance model for multiple criteria ABC analysis", Comput. Oper. Res., 35, pp. 776-796 (2008).
20. Ma, L.C. "A two-phase case-based distance approach for multiple-group classification problems", Comput. Ind. Eng., 63, pp. 89-97 (2012).
21. Jiang, H. "A multi-attribute classification method on fresh agricultural products", J. Comput., 9, pp. 2443- 2448 (2014).
22. Arikan, F. and Citak, S. "Multiple criteria inventory classification in an electronics firm", Int. J. Info. Tech. Dec. Mak., 16, pp. 315-331 (2017).
23. Dhar, A.R. and Sarkar, B. "Application of the MOORA method for multi-criteria inventory classification", Conference: 1st Frontiers in Optimization: Theory and Applications, Heritage Institute of Technology Kolkata (2017).
24. Douissa, M.R. and Jabeur, K. "A new model for multicriteria ABC inventory classification: PROAFTN method", Procedia. Comput. Sci., 96, pp. 550-559 (2016).
25. Lajili, I., Ladhari, T., and Babai, Z. "Adaptive machine learning classifiers for the class imbalance problem in ABC inventory classification", 6th International Conference on Information Systems, Logistics and Supply Chain. ILS Conference, Bordeaux, France (2016).
26. Hu, Q., Chakhar, S., Siraj, S., and Labib, A. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach", Eur. J. Oper. Res., 262, pp. 1136-1163 (2017).
27. Lolli, F., Ishizaka, A., Gamberini, R., Balugani, E., and Rimini, B. "Decision trees for supervised multicriteria inventory classification", Procedia. Manuf., 11, pp. 1871-1881 (2017).
28. Hadi-Vencheh, A. and Mohamadghasemi, A. "A fuzzy AHP-DEA approach for multiple criteria ABC inventory classification", Expert. Syst. Appl., 38, pp. 3346- 3352 (2011).
29. Kabir, G. and Sumi, R.S. "Integrating fuzzy Delphi with fuzzy analytic hierarchy process for multiple criteria inventory classification", J. Eng. Proj. Prod. Manag., 3, pp. 22-34 (2013).
30. Kabir, G. and Hasin, M.A.A. "Multi-criteria inventory classification through integration of fuzzy analytic hierarchy process and artificial neural network", Int. J. Ind. Syst. Eng., 14, pp. 74-103 (2013).
31. Lolli, F., Ishizaka, A., and Gamberini, R. "New AHPbased approaches for multi-criteria inventory classification", Int. J. Prod. Econ., 156, pp. 62-74 (2014).
32. Douissa, M.R. and Jabeur, K. "A new multi-criteria ABC inventory classification model based on a simplified electre III method and the continuous variable neighborhood search", 6th International Conference on Information Systems, Logistics and Supply Chain, Bordeaux, France (2016).
33. Mendel, J.M., John, R.I., and Feilong, L. "Interval type-2 fuzzy logic systems made simple", IEEE Trans. Fuzzy. Syst., 14, pp. 808-821 (2006).
34. Mendel, J.M., Uncertain Rule-based Fuzzy Logic Systems: Introduction and New Directions, Prentice Hall, Upper Saddle River, NJ (2001).
35. Chen, T.Y. "An integrated approach for assessing criterion importance with interval type-2 fuzzy sets and signed distances", J. Chinese. Inst. Indus. Eng., 28, pp. 553-572 (2011).
36. Chen, T.Y. "Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights", Appl. Math. Modell., 36, pp. 3029-3052 (2012).
37. Tahayori, H., Tettamanzi, A., and Antoni, G.D. "Approximated type-2 fuzzy set operations", In Proceedings of FUZZ-IEEE 2006, Vancouver, Canada, pp. 9042-9049 (2006).
38. Moore, R.E. "Methods and applications of interval analysis", Philadelphia, SIAM (1979).
39. Buckley, J.J. "Ranking alternatives using fuzzy numbers", Fuzzy. Set. Syst., 15, pp. 21-31 (1985).
40. Rashid, T., Beg, I., and Husnine, S.M. "Robot selection by using generalized interval-valued fuzzy numbers with TOPSS", Appl. Soft. Comput., 21, pp. 462-468 (2014).
41. Shipley, M.F., Korvin, D.K., and Obit, R. "A decision making model for multi-attribute problems incorporating uncertainty and bias measures", Comp. Oper. Res., 18, pp. 335-342 (1991).