Investigation into size effect on lateral vibrations of a micro-drill subjected to an axial load using the modified couple stress theory

Document Type : Research Note

Author

Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran.

Abstract

In this paper, the modified couple stress theory is used to capture size effect on dynamic behavior in a micro drill subjected to an axial load and a concentrated mass which is attached at its free end. Governing equations of lateral vibrations of the system and also associated boundary conditions are derived by obtaining the total kinetic and potential energies of the system and then using Hamilton’s principle. The Assumed Modes method has been applied to transform the governing partial differential equations into a set of infinite ordinary differential equations. Considering two terms of the equations, first two natural frequencies and also instability rotational speeds of the micro drill system are determined semi-analytically. Finally, numerical results of natural frequencies and also the threshold of instability speeds of the system are presented with respect to different values of the system parameters such as rotational speed, axial load, rotor length, concentrated mass, and also material length scale. The results show that the material length scale parameter is extremely effective on natural frequencies and also the threshold of instability speeds of the micro drill.

Keywords

Main Subjects


Refrences:
1.Jeon, B.S., Park, K.J., Jin Song, S., Joo, Y.C., and Min, K.D. Design, fabrication, and testing of a MEMS microturbine", J. Mech. Sci. Technol., 19(2), pp. 682- 691 (2005).
2. Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L. Development of micro power generatorsa review", Appl. Energ., 88(1), pp. 1-16 (2011).
3. Iizuka, A., Takato, M., Kaneko, M., Nishi, T., Saito, K., and Uchikoba, F. Millimeter scale MEMS air turbine generator by winding wire and multilayer magnetic ceramic circuit", Modern Mech. Eng., 2(02), pp. 41-46 (2012). 4. Schubert, D. Mems-concept using micro turbines for satellite power supply", Solar Power InTech, pp. 195- 210 (2012). 5. Pandey, R.K. and Panda, S.S. Drilling of bone: a comprehensive review", J. Clinical Orthop. Trauma, 4(1), pp. 15-30 (2013). 6. Rysava, Z., Bruschi, S., Carmignato, S., Medeossi, F., Savio, E., and Zanini, F. Micro-drilling and threading of the Ti6Al4V titanium alloy produced through additive manufacturing", Procedia CIRP, 46, pp. 583-586 (2016). 7. Zhang, W.M. and Meng, G. Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS", Sens. Actuators A Phys., 127(1), pp. 163-178 (2006). 8. Meng, G., Zhang, W.M., Huang, H., Li, H.G., and Chen, D.I. Micro-rotor dynamics for micro-electromechanical systems (MEMS)", Chaos Solitons Fractals, 40(2), pp. 538-562 (2009). 9. Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W. Strain gradient plasticity: theory and experiment", Acta Metall. Mater., 42(2), pp. 475-487 (1994). 10. Stolken, J.S. and Evans, A.G. A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), pp. 5109-5115 (1998). 11. Lam, D.C. and Chong, A.C.M. Indentation model and strain gradient plasticity law for glassy polymers", J. Mater. Res., 14(09), pp. 3784-3788 (1999). 2452 A. Rahi/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2441{2453 12. Chong, A.C.M. and Lam, D.C. Strain gradient plasticity e_ect in indentation hardness of polymers", J. Mater. Res., 14(10), pp. 4103-4110 (1999). 13. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), pp. 1477-1508 (2003). 14. Mindlin, R.D. and Tiersten, H.F. E_ects of couplestresses in linear elasticity", Archive for Rational Mechanics and Analysis, Arch. Rational Mech. Anal., 11(1), pp. 415-448 (1962). 15. Eringen, A.C. Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), pp. 1-16 (1972). 16. Yang, F., Chong, A.C.M., Lam, D.C., and Tong, P. Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), pp. 2731-2743 (2002). 17. Gurtin, M.E. and Murdoch, A.I. A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), pp. 291-323 (1975). 18. Gurtin, M.E. and Murdoch, A.I. Surface stress in solids", Int. J. Solids Struct., 14(6), pp. 431-440 (1978). 19. Abderezaei, J. and Moghimi Zand, M. Transient behavior of electrostatically-actuated micro systems considering squeeze _lm damping and mechanical shock", Scientia Iranica, 24(6), pp. 2887-2894 (2017). DOI: 10.24200/sci.2017.4245 20. Jabbarian, S. and Ahmadian, M. Free vibration analysis of functionally graded sti_ened micro-cylinder based on the modi_ed couple stress theory", Scientia Iranica, Transactions B, Mechanical Engineering, 25(5), pp. 2598-2615 (2018). 21. Rahi, A. Lateral vibrations of a microrotating shaft-disk system subjected to an axial load based on the modi_ed strain gradient theory", Mechanics of Advanced Materials and Structures (2018). DOI: 10.1080/15376494.2018.1444223 22. Shenas, A.G., Ziaee, S., and Malekzadeh, P. Vibrational behavior of rotating pre-twisted functionally graded microbeams in thermal environment", Compos. Struct., 157, pp. 222-235 (2016). 23. Shenas, A.G., Malekzadeh, P., and Mohebpour, S. Vibrational behavior of variable section functionally graded microbeams carrying microparticles in thermal environment", Thin-Walled Struct., 108, pp. 122-137 (2016). 24. Mindlin, R.D. Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), pp. 417-438 (1965). 25. Mindlin, R.D. and Eshel, N.N. On _rst straingradient theories in linear elasticity", Int. J. Solids Struct., 4(1), pp. 109-124 (1968). 26. Fleck, N.A. and Hutchinson, J.W. A phenomenological theory for strain gradient e_ects in plasticity", J. Mech. Phys. Solids, 41(12), pp. 1825-1857 (1993). 27. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), pp. 1477-1508 (2003). 28. Park, S.K. and Gao, X.L. Bernoulli-Euler beam model based on a modi_ed couple stress theory", J. Micromech. Microeng., 16(11), pp. 2355-2359 (2006). 29. Ma, H.M., Gao, X.L., and Reddy, J.N. A microstructure-dependent Timoshenko beam model based on a modi_ed couple stress theory", J. Mech. Phys. Solids, 56(12), pp. 3379-3391 (2008). 30. Asghari, M., Kahrobaiyan, M.H., Rahaeifard, M., and Ahmadian, M.T. Investigation of the size e_ects in Timoshenko beams based on the couple stress theory", Arch. Appl. Mech., 81(7), pp. 863-874 (2011). 31. Ke, L.L., Wang, Y.S., Yang, J., and Kitipornchai, S. Nonlinear free vibration of size-dependent functionally graded microbeams", Int J Eng Sci., 50(1), pp. 256-267 (2012). 32. Liang, L.N., Ke, L.L., Wang, Y.S., Yang, J., and Kitipornchai, S. Flexural vibration of an atomic force microscope cantilever based on modi_ed couple stress theory", Int. J. Struct. Stab. Dyn., 15(07), p. 1540025 (2015). 33. Ghiasi, E.K. Application of modi_ed couple stress theory to study dynamic characteristics of electrostatically actuated micro-beams resting upon squeeze-_lm damping under mechanical shock", Int. J. Adv. Mater. Sci. Eng., 6(1), pp. 1-15 (2016). 34. Dai, H.L., Wang, Y.K., and Wang, L. Nonlinear dynamics of cantilevered microbeams based on modi_ed couple stress theory", Int. J. Eng. Sci., 94, pp. 103-112 (2015). 35. Simsek, M. Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He's variational method", Compos. Struct., 131, pp. 207-214 (2015). 36. Sha_ei, N., Mousavi, A., and Ghadiri, M. Vibration behavior of a rotating non-uniform FG microbeam based on the modi_ed couple stress theory and GDQEM", Compos. Struct., 149, pp. 157-169 (2016). 37. Tsiatas, G.C. A new Kirchho_ plate model based on a modi_ed couple stress theory", Int. J. Solids Struct., 46(13), pp. 2757-2764 (2009). 38. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., and Darabi, M.A. Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates", Lat. Am. J. Solids Stru., 11(13), pp. 2351-2378 (2014). 39. Wang, K.F., Kitamura, T., and Wang, B. Nonlinear pull-in instability and free vibration of micro/ nanoscale plates with surface energy-a modi_ed couple stress theory model", Int. J. Mech. Sci., 99, pp. 288-296 (2015). 40. Askari, A.R. and Tahani, M. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates A. Rahi/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2441{2453 2453 based on the modi_ed couple stress theory", Physica E: Low-dimens. Syst. Nanostruct., 86, pp. 262-274 (2017). 41. Alinaghizadeh, F., Shariati, M., and Fish, J. Bending analysis of size-dependent functionally graded annular sector microplates based on the modi_ed couple stress theory", Appl. Math. Model., 44, pp. 540-556 (2017). 42. He, D., Yang, W., and Chen, W. A size-dependent composite laminated skew plate model based on a new modi_ed couple stress theory", Acta Mech. Solida Sin., 30(1), pp. 75-86 (2017). 43. Simsek, M. and Ayd_n, M. Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modi_ed couple stress theory", Compos. Struct., 160, pp. 408-421 (2017). 44. Guo, J., Chen, J., and Pan, E. Free vibration of threedimensional anisotropic layered composite nanoplates based on modi_ed couple-stress theory", Physica E: Low-dimens. Syst. Nanostruct., 87, pp. 98-106 (2017). 45. Abadi, M.M. and Daneshmehr, A.R. An investigation of modi_ed couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 75, pp. 40-53 (2014). 46. Tang, M., Ni, Q., Wang, L., Luo, Y., and Wang, Y. Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying uid based on modi_ed couple stress theory", Int. J. Eng. Sci., 84, pp. 1-10 (2014). 47. Hosseini-Hashemi, S., Sharifpour, F., and Ilkhani, M.R. On the free vibrations of size-dependent closed micro/nano-spherical shell based on the modi_ed couple stress theory", Int. J. Mech. Sci., 115, pp. 501-515 (2016). 48. Vatankhah, R. and Kahrobaiyan, M.H. Investigation of size-dependency in free-vibration of microresonators based on the strain gradient theory", Lat. Am. J. Solids Stru., 13(3), pp. 498-515 (2016). 49. Dehrouyeh-Semnani, A.M., BehboodiJouybari, M., and Dehrouyeh, M. On size-dependent lead-lag vibration of rotating microcantilevers", Int J Eng Sci., 101, pp. 50-63 (2016). 50. Hashemi, M. and Asghari, M. Investigation of the small-scale e_ects on the three-dimensional exural vibration characteristics of a basic model for microengines", Acta Mech., 226(9), pp. 3085-3096 (2015). 51. Yim, K.B. and Yim, J. Dynamic behavior of overhung rotors subjected to axial forces", Int. J. Precis. Eng. Man., 13(9), pp. 1575-1580 (2012). 52. Tiaki, M.M., Hosseini, S.A.A., and Zamanian, M. Nonlinear forced vibrations analysis of overhung rotors with unbalanced disk", Arch. Appl. Mech., 86(5), pp. 797-817 (2016). 53. Dental Simulation, Sweden (2017). http://www. sensegraphics.com/simulation/dentalsimulation/ 54. EureKAlert AAAS, The American Association for the Advancement of Science (AAAS), https:// www.eurekalert.org/pub releases/2015-12/uosasf120315. php (2017). 55. Chang, C.O. and Cheng, J.W. Non-linear dynamics and instability of a rotating shaft-disk system", J. Sound Vib., 160(3), pp. 433-454 (1993).