Refrences:
1.Jeon, B.S., Park, K.J., Jin Song, S., Joo, Y.C., and Min, K.D. Design, fabrication, and testing of a MEMS microturbine", J. Mech. Sci. Technol., 19(2), pp. 682- 691 (2005).
2. Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L. Development of micro power generatorsa review", Appl. Energ., 88(1), pp. 1-16 (2011).
3. Iizuka, A., Takato, M., Kaneko, M., Nishi, T., Saito, K., and Uchikoba, F. Millimeter scale MEMS air turbine generator by winding wire and multilayer magnetic ceramic circuit", Modern Mech. Eng., 2(02), pp. 41-46 (2012). 4. Schubert, D. Mems-concept using micro turbines for satellite power supply", Solar Power InTech, pp. 195- 210 (2012). 5. Pandey, R.K. and Panda, S.S. Drilling of bone: a comprehensive review", J. Clinical Orthop. Trauma, 4(1), pp. 15-30 (2013). 6. Rysava, Z., Bruschi, S., Carmignato, S., Medeossi, F., Savio, E., and Zanini, F. Micro-drilling and threading of the Ti6Al4V titanium alloy produced through additive manufacturing", Procedia CIRP, 46, pp. 583-586 (2016). 7. Zhang, W.M. and Meng, G. Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS", Sens. Actuators A Phys., 127(1), pp. 163-178 (2006). 8. Meng, G., Zhang, W.M., Huang, H., Li, H.G., and Chen, D.I. Micro-rotor dynamics for micro-electromechanical systems (MEMS)", Chaos Solitons Fractals, 40(2), pp. 538-562 (2009). 9. Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W. Strain gradient plasticity: theory and experiment", Acta Metall. Mater., 42(2), pp. 475-487 (1994). 10. Stolken, J.S. and Evans, A.G. A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), pp. 5109-5115 (1998). 11. Lam, D.C. and Chong, A.C.M. Indentation model and strain gradient plasticity law for glassy polymers", J. Mater. Res., 14(09), pp. 3784-3788 (1999). 2452 A. Rahi/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2441{2453 12. Chong, A.C.M. and Lam, D.C. Strain gradient plasticity e_ect in indentation hardness of polymers", J. Mater. Res., 14(10), pp. 4103-4110 (1999). 13. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), pp. 1477-1508 (2003). 14. Mindlin, R.D. and Tiersten, H.F. E_ects of couplestresses in linear elasticity", Archive for Rational Mechanics and Analysis, Arch. Rational Mech. Anal., 11(1), pp. 415-448 (1962). 15. Eringen, A.C. Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), pp. 1-16 (1972). 16. Yang, F., Chong, A.C.M., Lam, D.C., and Tong, P. Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), pp. 2731-2743 (2002). 17. Gurtin, M.E. and Murdoch, A.I. A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), pp. 291-323 (1975). 18. Gurtin, M.E. and Murdoch, A.I. Surface stress in solids", Int. J. Solids Struct., 14(6), pp. 431-440 (1978). 19. Abderezaei, J. and Moghimi Zand, M. Transient behavior of electrostatically-actuated micro systems considering squeeze _lm damping and mechanical shock", Scientia Iranica, 24(6), pp. 2887-2894 (2017). DOI: 10.24200/sci.2017.4245 20. Jabbarian, S. and Ahmadian, M. Free vibration analysis of functionally graded sti_ened micro-cylinder based on the modi_ed couple stress theory", Scientia Iranica, Transactions B, Mechanical Engineering, 25(5), pp. 2598-2615 (2018). 21. Rahi, A. Lateral vibrations of a microrotating shaft-disk system subjected to an axial load based on the modi_ed strain gradient theory", Mechanics of Advanced Materials and Structures (2018). DOI: 10.1080/15376494.2018.1444223 22. Shenas, A.G., Ziaee, S., and Malekzadeh, P. Vibrational behavior of rotating pre-twisted functionally graded microbeams in thermal environment", Compos. Struct., 157, pp. 222-235 (2016). 23. Shenas, A.G., Malekzadeh, P., and Mohebpour, S. Vibrational behavior of variable section functionally graded microbeams carrying microparticles in thermal environment", Thin-Walled Struct., 108, pp. 122-137 (2016). 24. Mindlin, R.D. Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), pp. 417-438 (1965). 25. Mindlin, R.D. and Eshel, N.N. On _rst straingradient theories in linear elasticity", Int. J. Solids Struct., 4(1), pp. 109-124 (1968). 26. Fleck, N.A. and Hutchinson, J.W. A phenomenological theory for strain gradient e_ects in plasticity", J. Mech. Phys. Solids, 41(12), pp. 1825-1857 (1993). 27. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), pp. 1477-1508 (2003). 28. Park, S.K. and Gao, X.L. Bernoulli-Euler beam model based on a modi_ed couple stress theory", J. Micromech. Microeng., 16(11), pp. 2355-2359 (2006). 29. Ma, H.M., Gao, X.L., and Reddy, J.N. A microstructure-dependent Timoshenko beam model based on a modi_ed couple stress theory", J. Mech. Phys. Solids, 56(12), pp. 3379-3391 (2008). 30. Asghari, M., Kahrobaiyan, M.H., Rahaeifard, M., and Ahmadian, M.T. Investigation of the size e_ects in Timoshenko beams based on the couple stress theory", Arch. Appl. Mech., 81(7), pp. 863-874 (2011). 31. Ke, L.L., Wang, Y.S., Yang, J., and Kitipornchai, S. Nonlinear free vibration of size-dependent functionally graded microbeams", Int J Eng Sci., 50(1), pp. 256-267 (2012). 32. Liang, L.N., Ke, L.L., Wang, Y.S., Yang, J., and Kitipornchai, S. Flexural vibration of an atomic force microscope cantilever based on modi_ed couple stress theory", Int. J. Struct. Stab. Dyn., 15(07), p. 1540025 (2015). 33. Ghiasi, E.K. Application of modi_ed couple stress theory to study dynamic characteristics of electrostatically actuated micro-beams resting upon squeeze-_lm damping under mechanical shock", Int. J. Adv. Mater. Sci. Eng., 6(1), pp. 1-15 (2016). 34. Dai, H.L., Wang, Y.K., and Wang, L. Nonlinear dynamics of cantilevered microbeams based on modi_ed couple stress theory", Int. J. Eng. Sci., 94, pp. 103-112 (2015). 35. Simsek, M. Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He's variational method", Compos. Struct., 131, pp. 207-214 (2015). 36. Sha_ei, N., Mousavi, A., and Ghadiri, M. Vibration behavior of a rotating non-uniform FG microbeam based on the modi_ed couple stress theory and GDQEM", Compos. Struct., 149, pp. 157-169 (2016). 37. Tsiatas, G.C. A new Kirchho_ plate model based on a modi_ed couple stress theory", Int. J. Solids Struct., 46(13), pp. 2757-2764 (2009). 38. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., and Darabi, M.A. Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates", Lat. Am. J. Solids Stru., 11(13), pp. 2351-2378 (2014). 39. Wang, K.F., Kitamura, T., and Wang, B. Nonlinear pull-in instability and free vibration of micro/ nanoscale plates with surface energy-a modi_ed couple stress theory model", Int. J. Mech. Sci., 99, pp. 288-296 (2015). 40. Askari, A.R. and Tahani, M. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates A. Rahi/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2441{2453 2453 based on the modi_ed couple stress theory", Physica E: Low-dimens. Syst. Nanostruct., 86, pp. 262-274 (2017). 41. Alinaghizadeh, F., Shariati, M., and Fish, J. Bending analysis of size-dependent functionally graded annular sector microplates based on the modi_ed couple stress theory", Appl. Math. Model., 44, pp. 540-556 (2017). 42. He, D., Yang, W., and Chen, W. A size-dependent composite laminated skew plate model based on a new modi_ed couple stress theory", Acta Mech. Solida Sin., 30(1), pp. 75-86 (2017). 43. Simsek, M. and Ayd_n, M. Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modi_ed couple stress theory", Compos. Struct., 160, pp. 408-421 (2017). 44. Guo, J., Chen, J., and Pan, E. Free vibration of threedimensional anisotropic layered composite nanoplates based on modi_ed couple-stress theory", Physica E: Low-dimens. Syst. Nanostruct., 87, pp. 98-106 (2017). 45. Abadi, M.M. and Daneshmehr, A.R. An investigation of modi_ed couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 75, pp. 40-53 (2014). 46. Tang, M., Ni, Q., Wang, L., Luo, Y., and Wang, Y. Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying uid based on modi_ed couple stress theory", Int. J. Eng. Sci., 84, pp. 1-10 (2014). 47. Hosseini-Hashemi, S., Sharifpour, F., and Ilkhani, M.R. On the free vibrations of size-dependent closed micro/nano-spherical shell based on the modi_ed couple stress theory", Int. J. Mech. Sci., 115, pp. 501-515 (2016). 48. Vatankhah, R. and Kahrobaiyan, M.H. Investigation of size-dependency in free-vibration of microresonators based on the strain gradient theory", Lat. Am. J. Solids Stru., 13(3), pp. 498-515 (2016). 49. Dehrouyeh-Semnani, A.M., BehboodiJouybari, M., and Dehrouyeh, M. On size-dependent lead-lag vibration of rotating microcantilevers", Int J Eng Sci., 101, pp. 50-63 (2016). 50. Hashemi, M. and Asghari, M. Investigation of the small-scale e_ects on the three-dimensional exural vibration characteristics of a basic model for microengines", Acta Mech., 226(9), pp. 3085-3096 (2015). 51. Yim, K.B. and Yim, J. Dynamic behavior of overhung rotors subjected to axial forces", Int. J. Precis. Eng. Man., 13(9), pp. 1575-1580 (2012). 52. Tiaki, M.M., Hosseini, S.A.A., and Zamanian, M. Nonlinear forced vibrations analysis of overhung rotors with unbalanced disk", Arch. Appl. Mech., 86(5), pp. 797-817 (2016). 53. Dental Simulation, Sweden (2017). http://www. sensegraphics.com/simulation/dentalsimulation/ 54. EureKAlert AAAS, The American Association for the Advancement of Science (AAAS), https:// www.eurekalert.org/pub releases/2015-12/uosasf120315. php (2017). 55. Chang, C.O. and Cheng, J.W. Non-linear dynamics and instability of a rotating shaft-disk system", J. Sound Vib., 160(3), pp. 433-454 (1993).