Numerical investigation into natural convection of nanofluids in an inclined square enclosure with non-uniform heated walls

Document Type : Article

Authors

1 Department of Mathematics, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.

2 Mathematics & Statistics, College of Engineering & Science, Louisiana Tech University, Ruston, LA 71272, USA.

Abstract

Studying on natural convection of nanofluids in enclosures with non-uniform heated walls is important for many engineering applications such as solar energy collection. In this article, we develop a fully higher-order compact (FHOC) finite difference method to investigate the natural convection and heat transfer of nanofluids in an inclined square enclosure with sinusoidal temperature distributions. Numerical simulations have been performed over a range of amplitude ratio, inclination angles, phase deviation, nanoparticles volume fraction, and Rayleigh number. Results show that heat transfer can exchange significantly by increasing the amplitude ratio and inclination angles in nanofluids. Moreover, elevating the nanoparticles volume fraction doesn't always enhance the heat transfer of nanofluids. When the Rayleigh number  is low ( = ), the average Nusselt number decreases as the solid volume fraction parameter  increases. On the other hand, elevating  has favorable effects on the heat transfer of nanofluids when  is high (e.g., , ). When , the total heat transfer rate decreases in the order of nanoparticles arranged as Cu, CuO, Al2O3, and TiO2. Finally, a correlated expression of the total average Nusselt number, the Rayleigh number and the solid volume fraction of nanoparticles is empirically obtained.

Keywords

Main Subjects


Refrences:
1.Choi, S.U.S. Enhancing thermal conductivity of uids with nanoparticle", Asme. Fed., 231(1), pp. 99-105 (1995).
2. Nemati, H., Farhadi, M., Sedighi, K., Ashorynejad, H.R., and Fattahi, E. Magnetic field effects on natural convection ow of nanouid in a rectangular cavity using the lattice Boltzmann model", Scientia Iranica, 19(2), pp. 303-310 (2012).
3. Khorasanizadeh, H., Amani, J., and Nikfar, M. Numerical investigation of Cu-water nanouid natural convection and entropy generation within a cavity with an embedded conductive ba_e", Scientia Iranica, 19(6), pp. 1996-2003 (2012). 4. Ho, C.J., Chen, D., Yan, W., and Wahian, O. Buoyancy-driven ow of nanouids in a cavity considering the Ludwig-Soret e_ect and sedimentation: Numerical study and experimental validation", Int. J. Heat Mass Tran., 77(4), pp. 684-694 (2014). 5.  Oztop, H.F., Estell_e, P., Yan, W., Al-Salem, K., Or_, J., and Mahian, O. A brief review of natural convection in enclosures under localized heating with and without nanouids", Int. Commun. Heat Mass Tran., 60, pp. 37-44 (2015). 6. Esfe, M.H., Akbari, M., Karimipour, A., Afrand, M., Mahian, O., and Wongwises, S. Mixedconvection ow and heat transfer in an inclined cavity equipped to a hot obstacle using nanouids considering temperature-dependent properties", Int. J. Heat Mass Tran., 85, pp. 656-666 (2015). 7. Alsabery, A.I., Chamkha, A.J., Saleh, H., and Hashim, I. Transient natural convective heat transfer in a trapezoidal cavity _lled with non-Newtonian nanouid with sinusoidal boundary conditions on both sidewalls", Powder Technol., 308, pp. 214-234 (2017). 8. Heris, S.Z., Pour, M.B., Mahian, O., and Wongwises, S. A comparative experimental study on the natural convection heat transfer of di_erent metal oxide nanopowders suspended in turbine oil inside an inclined cavity", Int. J. Heat Mass Tran., 73(9), pp. 231-238 (2014). 9. Rashidi, I., Mahian, O., Lorenzini, G., Biserni, C., andWongwises, S. Natural convection of Al2O3-water nanouid in a square cavity: E_ects of heterogeneous heating", Int. J. Heat Mass Tran., 74(7), pp. 391-402 (2014). 10. Li, D.F., Wang, X.F., and Hui, F. Fully HOC scheme for mixed convection ow in a lid-driven cavity _lled with a nanouid", Adv. Appl. Math. Mech., 5(1), pp. 55-77 (2013). 11. Wang, X.F. and Wang, J.T. Numerical simulation of natural convection in a triangle cavity _lled with nanouids using Tiwari and Das' model: E_ects of heat ux", Heat Trans.-Asian Res., 46, pp. 761-777 (2017). 12. Mahian, O., Kianifar, A., Heris, S.Z., and Wongwises, S. Natural convection of silica nanouids in square and triangular enclosures: Theoretical and experimental study", Int. J. Heat Mass Tran., 99, pp. 792-804 (2016). 13. Estell_e, P., Mahian, O., Mar_e, T., and  Oztop, H.F. Natural convection of CNT water-based nanouids in a di_erentially heated square cavity", J. Therm. Anal. Calorim., 128(3), pp. 1765-1770 (2017). 14. Alizadeh, M.R. and Dehghan, A.A. Conjugate natural convection of nanouids in an enclosure with a volumetric heat source", Arab J. Sci. Eng., 39(2), pp. 1195-1207 (2014). 15. Cianfrini, M., Corcione, M., and Quintino, A. Natural convection in square enclosures di_erentially heated at sides using alumina-water nanouids with temperature-dependent physical properties", Therm. Sci., 19(10), pp. 591-608 (2015). 16. Sun, Q. and Pop, I. Free convection in a triangle cavity _lled with a porous medium saturated with nanouids with ush mounted heater on the wall", Int. J. Therm. Sci., 50(11), pp. 2141-2153 (2011). 17. Ghasemi, B. and Aminossadati, S.M. Mixed convection in a lid-driven triangular enclosure _lled with nanouids", Int. Comm. Heat Mass Tran., 37(8), pp. 1142-1148 (2010). 18. Mahmoudi, A.H., Shahi, M., Raouf, A., and Ghasemian, A. Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity _lled with nanouid", Int. Comm. Heat Mass Tran., 37, pp. 1135-1141 (2010). 19. Haddad, Z., Abu-Nada, E., Oztop, H.F., and Mataoui, A. Natural convection in nanouids: Are the thermophoresis and Brownian motion e_ects signi_cant in nanouid heat transfer enhancement?", Int. J. Therm. Sci., 57, pp. 152-162 (2012). 20. Haddad, Z., Oztop, H.F., Abu-Nada, E., and Mataoui, A. A review on natural convective heat transfer of nanouids", Renew. Sustain. Energy Rev., 16(7), pp. 5363-5378 (2012). 21. Donald, A.N. and Adrian, B., Convection in Porous Media, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49562-0. 22. Sivasankaran, S., Sivakumar, V., and Prakash, P. Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both sidewalls", Int. J. Heat Mass Tran., 53(19), pp. 4304-4315 (2010). 23. Jmai, R., Ben-Beya, B., and Lili, T. Heat transfer and uid ow of nanouid _lled enclosure with two partially heated side walls and di_erent nanoparticles", Superlattice Microst., 53(1), pp. 130-154 (2013). 24. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., and Wongwises, S. A review of the applications of nanouids in solar energy", Int. J. Heat Mass Tran., 57, pp. 582-594 (2013). X. Wang and W. Dai/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2311{2328 2327 25. Mahian, O., Kianifar, A., Heris, S.Z., Wen, D., Sahin, A.Z., and Wongwises, S. Nanouids e_ects on the evaporation rate in a solar still equipped with a heat exchanger", Nano Energy, 36, pp. 134-155 (2017). 26. Nasrin, R., Parvin, S., and Alim, M.A. Heat transfer by nanouids through a at plate solar collector", Procedia Engineering, 90, pp. 364-370 (2014). 27. Arani, A.A.A., Sebdani, S.M., Mahmoodi, M., Ardeshiri, A., and Aliakbari, M. Numerical study of mixed convection ow in a lid-driven cavity with sinusoidal heating on sidewalls using nanouid", Superlattice Microst., 51(6), pp. 893-911 (2012). 28. Nasrin, R. and Alim, M.A. Performance of nanouids on heat transfer in a wavy solar collector", Int. J. Eng. Sci. Technol., 5(3), pp. 58-77 (2013). 29. Mejri, I. and Mahmoudi, A. MHD natural convection in a nanouid-_lled open enclosure with a sinusoidal boundary condition", Chem. Eng. Res. Des., 98, pp. 1-16 (2015). 30. Rees, D.A.S. The e_ect of steady streamwise surface temperature variations on vertical free convection", Int. J. Heat Mass Transfer, 31, pp. 1344-1353 (1999). 31. Elif, B.O. Natural convection of water-based nanouids in an inclined enclosure with a heat source", Int. J. Therm. Sci., 48(11), pp. 2063-2073 (2009). 32. Abu-Nada, E. Mixed convection ow in a lid-driven inclined square enclosure _lled with a nanouid", Eur. J. Mech. B-Fluid, 29(6), pp. 472-482 (2010). 33. Ghasemi, B. and Aminossadati, S.M. Mixed convection in a lid-driven triangular enclosure _lled with nanouids", Int. J. Heat Mass Tran., 37(8), pp. 1142- 1148 (2010). 34. Lavasani, A., Farhadi, M., and Darzi, R. Study of convection heat transfer enhancement inside lid driven cavity utilizing _ns and nanouid", Therm. Sci., 21(6), pp. 2431-2442 (2017). 35. Mansour, M.A., Ahmed, S.E., and Chamkha, A.J. Entropy generation optimization for MHD natural convection of a nanouid in porous media-_lled enclosure with active parts and viscous dissipation", Int. J. Numer. Method Heat Fluid Flow, 27(2), pp. 379-399 (2017). 36. Shahriari, A., Javaran, E.J., and Rahnama, M. E_ect of nanoparticles Brownian motion and uniform sinusoidal roughness elements on natural convection in an enclosure", J. Therm. Anal. Calorim., 131, pp. 2865- 2884 (2018). 37. Oztop, H.F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures _lled with nanouids", Int. J. Heat Fluid Flow, 29(5), pp. 1326-1336 (2008). 38. Ashraf, M.I. and Sinha, S. Natural convection of nanouids in a cavity with nonuniform temperature distributions on side walls", Numer. Heat Transfer-A Appl., 65(3), pp. 247-268 (2014). 39. Wang, X.F., Shi, D.Y., and Li, D.F. Natural convective ow in an inclined lid-driven enclosure with a heated thin plate in the middle", Int. J. Heat Mass Tran., 55(25-26), pp. 8073-8087 (2012). 40. Erturk, E. Numerical performance of compact fourthorder formulation of the Navier-Stokes equations", Commun. Numer. Meth. Eng., 24(12), pp. 2003-2019 (2008). 41. Erturk, E., Corke, T.C., and Gokcol, C. Numerical solutions of 2-D steady incompressible driven cavity ow at high Reynolds numbers", Int. J. Numer. Methods Fluids, 48(7), pp. 747-774 (2005). 42. Famouri, M. and Hooman, K. Entropy generation for natural convection by heated partitions in a cavity", Int. Commun. Heat Mass Tran., 35(4), pp. 492-502 (2008). 43. Bejan, A. On the boundary layer regime in a vertical enclosure _lled with a porous medium", Lett. Heat Mass Tran., 6(2), pp. 93-102 (1979). 44. Gross, R.J., Bear, M.R., and Hickox, C.E. The application of ux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium", Proc. 8th Int. Heat Tran. Conf., San Francisco, CA, pp. 2641-2646 (1986). 45. Manole, D.M. and Lage, J.L. Numerical benchmark results for natural convection in a porous medium cavity", Heat Mass Tran. Porous Media, ASME Conf. 216, pp. 55-60 (1992). 46. Goyeau, B., Songbe, J.P., and Gobin, D. Numerical study of double-di_usive natural convection in a porous cavity using the darcy-brinkman formulation", Int. J. Heat Mass Tran., 39(7), pp. 1363-1378 (1996). 47. Baytas, A.C. and Pop, I. Free convection in a square porous cavity using a thermal nonequilibrium model", Int. J. Therm. Sci., 41(9), pp. 861-870 (2002). 48. Saeid, N.H. and Pop, I. Natural convection from a discrete heater in a square cavity _lled with a porous medium", J. Porous Media, 8(1), pp. 55-63 (2005). 49. Varol, Y., Oztop, H.F., and Varol, A. E_ects of thin _n on natural convection in porous triangular enclosures", Int. J. Therm. Sci., 46(10), pp. 1033-1045 (2007). 50. Talebi, F., Mahmoudi, A.H., and Shahi, M. Numerical study of mixed convection ows in a square liddriven cavity utilizing nanouid", Int. Commun. Heat Mass Tran., 37(1), pp. 79-90 (2010). 51. Ben-Cheikh, N., Chamkha, A.J., Ben-Beya, B., and Lili, T. Natural convection of water-based nanouids in a square enclosure with non-uniform heating of the bottom wall", J. Modern Phys., 4(2), pp. 147-159 (2013). 2328 X. Wang and W. Dai/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2311{2328 52. Wang, X. and Dai, W. Heatline analysis on heat transfer and convective ow of nanouids in an inclined enclosure", Heat Tran. Eng., 39(10), pp. 843-860 (2018).
Volume 26, Issue 4
Transactions on Mechanical Engineering (B)
July and August 2019
Pages 2311-2328
  • Receive Date: 06 February 2016
  • Revise Date: 04 November 2017
  • Accept Date: 23 April 2018