Refrences:
1.Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A., and Vahabi, S. Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comput. Mater. Sci., 44, pp. 968-978 (2009).
2. Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A., and Vahabi, S. Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis", Comput. Mater. Sci., 44, pp. 951-961 (2009).
3. Baferani, A.H., Saidi, A.R., and Ehteshami, H. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93, pp. 1842-1853 (2011). 4. Bodaghi, M. and Saidi, A.R. Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation", Arch. Appl. Mech., 81, pp. 765-780 (2011). 5. Chien, R.-D. and Chen, C.-S. Nonlinear vibration of laminated plates on a nonlinear elastic foundation", Compos. Struct., 70, pp. 90-99 (2005). 6. Duc, N.D., Bich, D.H., and Cong, P.H. Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Therm. Stress., 39, pp. 278-297 (2016). 7. Gajendar, N. Large amplitude vibration of plates on elastic foundations", Int. J. Non-Linear Mech., 2, pp. 163-172 (1967). 8. Kiani, Y., Shakeri, M., and Eslami, M.R. Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace- Fourier transformation", Acta Mech., 223, pp. 1199- 1218 (2012). 9. Kiani, Y., Akbarzadeh, A.H., Chen, Z.T., and Eslami, M.R. Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94, pp. 2474- 2484 (2012). 10. Shen, H., Chen, X., Licheng, G., Wu, L., and Huang, X.-L. Nonlinear vibration of FGM doubly curved panel resting on elastic foundations in thermal environments", Aerosp. Sci. Technol., 47, pp. 434-446 (2015). 11. Shen, H.S. and Wang, Z.X. Nonlinear vibration of hybrid laminated plates resting on elastic foundations in thermal environments", Appl. Math. Model., 36, pp. 6275-6290 (2012). 12. Shen, H.S. and Wang, H. Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B Eng., 60, pp. 167-177 (2014). 13. Huang, Z.Y., Lu, C.F., and Chen, W.Q. Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85, pp. 95-104 (2008). 14. Dehghan, M. and Baradaran, G.H. Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed _nite element and differential quadrature method", Appl. Math. Comput., 218, pp. 2772-2784 (2011). 15. Qin, Q.H. and Diao, S. Nonlinear analysis of thick plates on an elastic foundation by HT FE with pextension capabilities", Int. J. Solid Struct., 33, pp. 4583-4604 (1996). 16. Duc, N.D. and Cong, P.H. Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments", Compos. Struct., 100, pp. 566- 574 (2013). 17. Fallah, A., Aghdam, M.M., and Kargarnovin, M.H. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83, pp. 177-191 (2013). 18. Fallah, A. and Aghdam, M.M. Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech. A/Solids., 30, pp. 571-583 (2011). 19. Tacza la, M., Buczkowski, R., and Kleiber, M. Nonlinear free vibration of pre- and post-buckled FGM plates on two-parameter foundation in the thermal environment", Compos. Struct., 137, pp. 85-92 (2016). 20. Yang, Z., Yuan-yuan, G., and Fangin, B. Solution for a rectangular plate on elastic foundation with free edges using reciprocal theorem method", Math. Eterna., 2, pp. 335-343 (2012). 828 S. Parida and S.C. Mohanty/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 815{833 21. Sundararajan, N., Prakash, T., and Ganapathi, M. Nonlinear free exural vibrations of functionally graded rectangular and skew plates under thermal environments", Finite Elem. Anal. Des., 42, pp. 152- 168 (2005). 22. Huang, X.-L. and Shen, H.-S. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solids Struct., 41, pp. 2403-2427 (2004). 23. Civalek, O. Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Model., 31, pp. 606- 624 (2007). 24. Qin, Q.H. Nonlinear analysis of reissner plates on an elastic foundation by the bem", Int. J. Solids Struct., 30, pp. 3101-3111 (1993). 25. Singha, M.K. and Daripa, R. Nonlinear vibration and dynamic stability analysis of composite plates", J. Sound Vib., 328, pp. 541-554 (2009). 26. Thi, V.T.A. and Duc, N.D. Nonlinear response of a shear deformable S- FGM shallow spherical shell with ceramic-metal- ceramic layers resting on an elastic foundation in a thermal environment", Mech. Adv. Mater. Struct., 23, pp. 926-934 (2016). 27. Tornabene, F., Fantuzzi, N., Viola, E., and Reddy, J.N. Winkler-Pasternak foundation e_ect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B Eng., 57, pp. 269-296 (2014). 28. Tornabene, F., Viola, E., and Fantuzzi, N. General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, pp. 94-117 (2013). 29. Szekrenyes, A. Nonsingular crack modelling in orthotropic plates by four equivalent single layers", Eur. J. Mech. - A/Solids., 55, pp. 73-99 (2016a). 30. Szekrenyes, A. Semi-layerwise analysis of laminated plates with nonsingular delamination-The theorem of autocontinuity", Appl. Math. Model., 40(2), pp. 1344- 1371 (2016b). 31. Touloukin, Y.S., Thermophysical Properties of High Temperature Solid Materials, MacMillan, New York (1967). 32. Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge University Press, 2nd Ed. (2010). 33. Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt, R.J., Concepts and Applications of Finite Element Analysis, Fourth Edn., John Wiley & Sons (Asia), Pvt. Ltd. (2002).