Document Type : Article

**Authors**

Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.

**Abstract**

In this paper,a fuzzy analog controller circuit is provided for the inverted Pendulum problem which resulted in a simple analog circuit simply does the act of controlling without requiring to any processing structure.In other words,in case of constructing the proposed circuit,a small analog chip controls the inverted pendulum.For this purpose,the first step is the study of the dynamic model of the inverted pendulum and then a fuzzy controller is designed systematically.In the following,the number of membership functions and the formation of them are designed.In addition,the different MFs and different numbers are examined for each variable and the most efficient structure is selected as fuzzy controller.To assess efficiency of designed fuzzy controller,the controller is simulated in Simulink and then this design is implemented at transistor level in TSMC 0.18µm CMOS technology.In this work,the MFs,the circuits for realization of the knowledge-based and defuzzification circuits are designed in current mode.The proposed circuits are simulated and evaluated in Advanced Design System software based on CMOS technology.Simulation results show that the inverted pendulum is controlled with high accuracy and high speed,meanwhile the controllers have low power consumption and good robustness to outer large and fast disturbance rather than the previous works.

**Keywords**

Refrences:

1.Dualibe, C., Verleysen, M., and Jespers, P.G.A., Design of Analog Fuzzy Logic Controllers in Cmos Technologies, Kluwer Academic Publishers, The United States of America (2003).

2. Yu, J., Shi, P., Dong, W., and Lin, C. Command _ltering-based fuzzy control for nonlinear systems with saturation input", IEEE Trans. Cybern, 47(9), pp. 2472-2479 (2017).

3. Mehrpooya, M. and Hejazi, S. Design and implementation of optimized fuzzy logic controller for a nonlinear dynamic industrial plant using Hysys and Matlab simulation packages", Ind. Eng. Chem. Res, 54(44), pp. 11097-11105 (2015). 4. Jafari, R. and Yu, W. Fuzzy control for uncertainty nonlinear systems with dual fuzzy equations", J. Intell. Fuzzy Syst., 29(3), pp. 1229-1240 (Oct. 2015). 5. Li, L. and Sun, Y. Adaptive fuzzy control for nonlinear fractional-order uncertain systems with unknown uncertainties and external disturbance", Entropy, 17(8), pp. 5580-5592 (Aug. 2015). 6. Sirisha, V. and A. Junghare, S. A Comparative study of controllers for stabilizing a rotary inverted pendulum", Int. J. Chaos, Control. Model. Simul., 3(1/2), pp. 113 (Jun. 2014). 7. Jia-Jun, W. Position and speed tracking control of inverted pendulum based on double PID controllers", In 2015 34th Chinese Control Conference (CCC), pp. 4197-4201 (2015). 8. Akole, M. and Tyagi, B. Design of fuzzy logic controller for nonlinear model of inverted pendulum-cart system", XXXII Natl. Syst. Conf. NSC, pp. 750-755 (2008). 9. Nour, M.I.H., Ooi, J., and Chan, K.Y. Fuzzy logic control vs. conventional PID control of an inverted pendulum robot", 2007 Int. Conf. Intell. Adv. Syst., pp. 1-6 (2007). 10. Yi, J. and Yubazaki, N. Stabilization fuzzy control of inverted pendulum systems", Artif. Intell. Eng., 14(2), pp. 153-163 (Apr. 2000). 11. Chen Wei Ji, Fang Lei, and Lei Kam Kin Fuzzy logic controller for an inverted pendulum system", In 1997 IEEE International Conference on Intelligent Processing Systems, pp. 185-189 (1997). 12. Chih Hui Chiu and Wei Yu Chen A chip based fuzzy logic controller", In IEEE International Conference Mechatronics and Automation, 4, pp. 2194-2199 (July 2005). 13. Yose_, G., Aminifar, S., Neda, S., and Daneshwar, M.A. Design of a mixed-signal digital CMOS fuzzy logic controller (FLC) chip using new current mode circuits", AEU - Int. J. Electron. Commun., 65(3), pp. 173-181 (2011). 14. Orcioni, S., Biagetti, G., and Conti, M. A Mixed signal fuzzy controller using current mode circuits", Analog Integrated Circuits and Signal Processing., 38, pp. 215-231 (2004). 15. Amirkhanzadeh, R., Khoei, A., and Hadidi, K. A mixed-signal current-mode fuzzy logic controller", AEU - Int. J. Electron. Commun., 59(3), pp. 177-184 (2005). 16. Aminifar, S., Khoei, A., Haidi, K., and Yose_, G. A digital CMOS fuzzy logic controller chip using new fuzzi_er and max circuit", AEU - Int. J. Electron. Commun., 60(8), pp. 557-566 (2006). 17. Wang, J.J. Simulation studies of inverted pendulum based on PID controllers", Simul. Model. Pract. Theory, 19(1), pp. 440-449 (2011). 18. Yamakawa, T. Electronic circuits dedicated to fuzzy logic controller", Sci. Iran., 18(3D), pp. 528-538 (2011). 19. Wang, L.-X., A Course in Fuzzy Systems and Control, Prentice-Hall International, Inc (1997). 20. Mobara, M., Karimpour, A., MollaAhamadian, H., and Pahnabi, A. Modeling and control of inverted pendulum based on PWA-FUZZY approach", In 2015 International Congress on Technology, Communication and Knowledge (ICTCK), pp. 112-116 (2015). 21. Becerikli, Y. and Celik, B.K. Fuzzy control of inverted pendulum and concept of stability using Java application", Math. Comput. Model, 46(1-2), pp. 24- 37 (2007). 22. Daneshvar, M. Programmable trapezoidal and Gaussian membership function generator", Basic Appl. Sci. Res., 1(11), pp. 2073-2079 (2011). 23. Moshfe, S., Khoei, A., Hadidi, K., and Mashou_, B. A fully programmable nano-watt analogue CMOS circuit for Gaussian functions", In 2010 International Conference on Electronic Devices, Systems and Applications, pp. 82-87 (2010). 24. Esmaeil Pour, M. and Mashou_, B. A low power consumption and compact mixed-signal Gaussian membership function circuit for neural/fuzzy hardware", In 2011 International Conference on Electronic Devices, Systems and Applications (ICEDSA), pp. 87-91 (2011). 25. Khaneshan, T.M., Nematzadeh, M., Khoei, A., and Hadidi, K. An analog recon_gurable Gaussian-shaped membership function generator using current-mode techniques", ICEE 2012 - 20th Iran. Conf. Electr. Eng., pp. 145-149 (2012). 1748 S.M. Azimi, and H. Miar-Naimi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1736{1748 26. Chih-Min Lin and Hsin-Yi Li Adaptive dynamic sliding-mode fuzzy CMAC for voice coil motor using asymmetric Gaussian membership Function", IEEE Trans. Ind. Electron., 17(8), pp. 5662-5671 (Oct. 2014). 27. Pandiyan, M. and Mani, G. Embedded low power analog CMOS fuzzy logic controller chip for industrial applications", In 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), pp. 43-48 (2015). 28. Alikhani, A. and Ahmadi, A. A novel current-mode min-max circuit", Analog Integr. Circuits Signal Process., 72(2), pp. 343-350 (2012). 29. Ranjbar, M., Karimi, G., and Razaghian, F. A novel low voltage CMOS controllable fuzzy inference circuit", Analog Integr. Circuits Signal Process., 84(2), pp. 149-160 (2015). 30. Prommee, P., Angkeaw, K., Somdunyakanok, M., and Dejhan, K. CMOS-based near zero-o_set multiple inputs max-min circuits and its applications", Analog Integr. Circuits Signal Process., 61(1), pp. 93-105 (2009). 31. Mesgarzadeh, B. A CMOS implementation of currentmode min-max circuits and a sample fuzzy application", In IEEE International Conference on Fuzzy Systems, pp. 941-946 (2004). 32. Prommee, P. and Chattrakun, K. CMOS WTA maximum and minimum circuits with their applications to analog switch and recti_ers", Microelectronics J., 42(1), pp. 52-62 (2011). 33. Peymanfar, A., Khoei, A., and Hadidi, K. Design of a general propose neuro-fuzzy controller by using modi _ed adaptive-network-based fuzzy inference system", AEU - Int. J. Electron. Commun., 64(5), pp. 433-442 (2010). 34. Peyravi, H., Khoei, A., and Hadidi, K. Design of an analog CMOS fuzzy logic controller chip", Fuzzy Sets Syst., 132(2), pp. 245-260 (Dec. 2002). 35. Soleimani, M., Khoei, A., and Hadidi, K. Currentmode analog CMOS fuzzy logic controller", In 2010 IEEE Asia Paci_c Conference on Circuits and Systems, 1, pp. 224-227 (2010).

Transactions on Computer Science & Engineering and Electrical Engineering (D)

May and June 2019Pages 1736-1748