Refrences:
1.Kaveh, A. Applications of topology and matroid theory to the analysis of structures", Ph.D. Thesis, Imperial College of Science and Technology, London University, UK (1974).
2. Kaveh, A., Structural Mechanics: Graph and Matrix Methods, Research Studies Press, 3rd edition, Somerset, UK (2004).
3. Kaveh, A., Optimal Structural Analysis, John Wiley, 2nd Edn., Chichester, UK (2006).
4. Papademetrious, C.H. The NP-completeness of bandwidth minimization problem", Comput. J., 16, pp. 177-192 (1976). 5. Gibbs, N.E., Poole, W.G., and Stockmeyer, P.K. An algorithm for reducing the bandwidth and pro_le of a sparse matrix", SIAM J. Numer. Anal., 12, pp. 236- 250 (1976). 6. Cuthill, E. and McKee, J. Reducing the bandwidth of sparse symmetric matrices", Proceedings of the 24th National Conference ACM, Bradon System Press, NJ, pp. 157-172 (1969). 7. Bernardes, J.A.B. and Oliveira, S.L.G.D. A systematic review of heuristics for pro_le reduction of symmetric matrices", Procd. Comput. Sci., 51, pp. 221-230 (2015). 8. King, I.P. An automatic reordering scheme for simultaneous equations derived from network systems", Int. J. Numer. Methods Eng., 2, pp. 523-533 (1970). 9. Kaveh, A. and Behzadi, A.M. An e_cient algorithm for nodal ordering of networks", Iran. J. Sci. Technol., Transactions in Civil Engineering, 11, pp. 11-18 (1987). 10. Kaveh, A. and Roosta, G.R. Comparative study of _nite element nodal ordering methods", Eng. J., 20(1&2), pp. 86-96 (1998). 11. Koohestani, B. and Poli, R. Addressing the envelope reduction of sparse matrices using a genetic programming system", Comput. Optimiz. Appl., 60, pp. 789- 814 (2014). 12. Kaveh, A., Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2nd Edn., Springer International Publishing, Switzerland (2017). 13. Kaveh, A. and Mahdavi, V.R. Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, pp. 18-27 (2014). 14. Kaveh, A. and Ilchi Ghazaan, M. Enhanced colliding bodies optimization for design problems with continuous and discrete variables", Adv. Eng. Softw., 77, pp. 66-75 (2014). 15. Kaveh, A. and Zolghadr, A. A novel meta-heuristic algorithm: tug of war optimization", Int. J. Optim. Civil Eng., 6, pp. 469-492 (2016). 16. Kaveh, A. and Ilchi Ghazaan, M. A new metaheuristic algorithm: vibrating particles system", Sci. Iran., 24(2), pp. 551-566 (2017). 17. Sloan, S.W. An algorithm for pro_le and wavefront reduction of sparse matrices", Int. J. Numer. Methods Eng., 23, pp. 1693-1704 (1986). 18. Kaveh, A. and Rahimi Bondarabdy, H.A. A hybrid method for _nite element ordering", Comput. Struct., 80(3-4), pp. 219-225 (2002). 19. Rahimi Bondarabady, H.A., and Kaveh, A. Nodal ordering using graph theory and a genetic algorithm", Finite Elem. Anal. Des., 40(9-10), pp. 1271-1280 (2004). 20. Kaveh, A. and Shara_, P. Optimal priority functions for pro_le reduction using ant colony optimization", Finite Elem. Anal. Des., 44, pp. 131-138 (2008). 21. Kaveh, A. and Shara_, P. Ordering for bandwidth and pro_le minimization problems via charged system search algorithm", Iran. J. Sci. Technol., Transactions in Civil Engineering, 36(C1), pp. 39-52 (2012). 22. Kaveh, A. and Bijari, Sh. Bandwidth, pro_le and wavefront optimization using PSO, CBO, ECBO and TWO algorithms", Iran. J. Sci. Technol., Transactions in Civil Engineering, 41(1), pp. 1-12 (2017). 23. Everstine, G.C. A comparison of three resequencing algorithms for the reduction of matrix pro_le and wavefront", Int. J. Numer. Methods Eng., 14(6), pp. 837-853 (1979).