Refrences:
1.Ahmadian, M.T., Mojahedi, M., and Moeenfard, H. Free vibration analysis of a nonlinear beam using homotopy and modified Lindstedt-Poincare methods", Journal of Solid Mechanics, 1, pp. 29-36 (2009).
2. Bakhtiari-Nejad, F. and Nazari, M. Nonlinear vibration analysis of isotropic cantilever plate with viscoelastic laminate", Nonlinear Dynam., 56, pp. 325- 356 (2009).
3. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, USA (1983). 4. Srinil, N. and Zanganeh, H. Modelling of coupled cross-ow/in-line vortex-induced vibrations, using double Du_ng and Van der Pol oscillators", Ocean Sci. J., 53, pp. 83-97 (2012). 5. Guo, Z., Leung, A.Y.T., and Yang, H.X. Iterative homotopy harmonic balancing approach for conservative oscillator with strong odd-nonlinearity", Appl. Math. Model., 35, pp. 1717-1728 (2011). 6. Liao, S.J. and Cheung, A.T. Application of homotopy analysis method in nonlinear oscillations", J. Appl. Mech., 65, pp. 914-922 (1998). 7. Mickens, R.E. Mathematical and numerical study of the Du_ng-harmonic oscillator", J. Sound Vib., 244, pp. 563-567 (2001). 8. Pirbodaghi, P., Hoseini, S.H., Ahmadian, M.T., and Farrahi, G.H. Du_ng equations with cubic and quantic nonlinearities", Comput. Math. Appl., 57, pp. 500- 506 (2009). 9. Ganji, D.D., Gorji, M., Soleimani, S., and Esmaelpour, M. Solution of nonlinear cubic-quintic Du_ng oscillators using He's energy balance method", J. Zhejiang Univ-Sc. B, 10, pp. 1263-1268 (2009). 10. Khan, Y., Akbarzade, M., and Kargar, A. Coupling of homotopy and the variational approach for a conservative oscillator with strong odd-nonlinearity", Sci. Iran., 19, pp. 417-422 (2012). 11. Joubari, M.M., Asghari, R., and Jahromy, M.Z. Investigation of the dynamic behavior of periodic systems with Newton harmonic balance method", Math. Comput. Model., 44, pp. 418-427 (2012). 12. Zengin, F.O., Kaya, M.O., and Demirbag, S.A. Approximate period calculation for some strongly nonlinear oscillation by He's parameter-expanding methods", Nonlinear Anal. Real., 10, pp. 2177-2182 (2009). 13. Ibsen, L.B., Barari, A., and Kimiaeifar, A. Analysis of highly nonlinear oscillation systems using He's maxmin method and comparison with homotopy analysis and energy balance methods", Sadhana-Acad. P. Eng. S., 35, pp. 433-448 (2010). 14. Razzak, M.A. Coupling of energy and harmonic balance method for solving a conservative oscillator with strong odd-nonlinearity", Sci. Iran., 55, pp. 991- 998 (2018). 15. Razzak, M.A. A new analytic approach to investigate the strongly nonlinear oscillators", Alexandria Engineering Journal, 55, pp. 1827-1834 (2016). 16. El-Naggar, A.M. and Ismail, G.M. Analytical solution of strongly nonlinear Du_ng oscillators", Alexandria Engineering Journal, 55, pp. 1581-1585 (2016). 17. Khan, Y. and Austin, F. Application of the Laplace decomposition method to nonlinear homogenous and non-homogeneous advection equations", Zeitschrift fur Naturforschung A, 65a, pp. 849-853 (2010). 18. Khan, Y. and Wu, Q. Homotopy perturbation transform method for nonlinear equations using He's polynomials", Comput. Math. Appl., 61, pp. 1963-1967 (2011). 19. Nourazar, S. and Mirzabeigy, A. Approximate solution for nonlinear Du_ng oscillator with damping effect using the modi_ed di_erential transform method", Sci. Iran., 20, pp. 364-368 (2013). 20. Hosseini, S.A.A. Some considerations on higher order approximation of Du_ng equation in the case of primary resonance", Sci. Iran., 20, pp. 1464-1473 (2013). 21. Zhou, J.K. Di_erential Transformation and its Application for Electrical Circuits, Huarjung University Press, Wuuhahn, China (1986). 22. Abdel-Halim Hassan, I.H. Application to di_erential transformation method for solving systems of di_erential equations", Appl. Math. Model., 32, pp. 2552-2559 (2008). 23. Mao, Q. Design of shaped piezoelectric modal sensors for cantilever beams with intermediate support by using di_erential transform method", Appl. Acoust., 73, pp. 144-149 (2012). 24. Rashidi, M.M. and Domairry, G. New analytical solution of the three-dimensional Navier Stokes equations", Mod. Phys. Lett. B, 23, pp. 3147-3155 (2009). 25. Rashidi, M.M. The modi_ed di_erential transform method for solving MHD boundary-layer equations", Comput. Phys. Commun., 180, pp. 2210-2217 (2009). 26. Al-Amr, M.O. New applications of reduced di_erential transform method", Alexandria Engineering Journal, 53, pp. 243-247 (2004). 27. Taghavi, A., Babaei, A., and Mohammadpour, A. Application of reduced di_erential transform method for solving nonlinear reaction-di_usion-convection problems", Applications & Applied Mathematics, 10, pp. 162-170 (2015). 886 H. Tunc and M. Sari/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 879{886 28. Hesam, S., Nazemi, A.N., and Haghbin, A. Analytical solution for the generalized Kuratomo-Sivashinsky equation by the di_erential transform method", Sci. Iran., 20, pp. 1805-1811 (2013). 29. Jang, M.-J., Chen, C.-L., and. Liyb, Y.-C On solving the initial-value problems using the di_erential transformation method", Appl. Math. Comput., 115, pp. 145-160 (2000). 30. Kudryashov, N.A. Logistic function as solution of many di_erential equations", Appl. Math. Model., 39, pp. 5733-5742 (2015). 31. Kudryashov, N.A. Polynomials in logistic function and solitary waves of nonlinear di_erential equations", Appl. Math. Comput., 219, pp. 9245-9253 (2013). 32. Abdel-Halim Hassan, I.H. Di_erential transformation technique for solving higher-order initial value problems", Appl. Math. Comput., 154, pp. 299-311 (2004). 33. Pan, X. and Zhang, L. A new _nite di_erence scheme for the Rosenau-Burgers equation", Appl. Math. Comput., 218, pp. 8917-8924 (2012).