References
1. Yu, J.X. and Cheng J. \Graph reachability queries:
A survey", In Managing and Mining Graph Data,
Springer, pp. 181-215 (2010).
2. Agrawal, R., Borgida, A., and Jagadish, H.V. \E-
cient management of transitive relationships in large
data and knowledge bases", In SIGMOD, 18(2), pp.
253-262 (1989).
3. Nuutila, E. \Ecient transitive closure computation
in large digraphs", PhD Thesis, Finnish Academy of
Technology (1995).
4. van Schaik, S.J. and de Moor, O. \A memory ecient
reachability data structure through bit vector compression",
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011,
Athens, Greece, pp. 913-924 (12-16 June 2011)
5. Tril, S. and Leser, U. \Fast and practical indexing and
querying of very large graphs", In SIGMOD'07 (2007).
6. Yildirim, H., Chaoji, V., and Zaki, M.J. \Grail:
Scalable reachability index for large graphs", PVLDB,
3(1), pp. 276-284 (2010).
7. Juping, W. \Discussion of graph reachability query
with keyword and distance constraint", IDEAL-2016,
pp. 293-301 (2016).
8. Ammann, P. and Outt, J., Introduction to Software
Testing, First Ed., Cambridge University Press, 120 p.
(2008).
9. Sharma, P. and Khurana, N. \Study of optimal path
nding techniques", Int. J. Adv. Technol., 4(2), pp.
124-130 (2013)
M. Valizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1441{1455 1455
10. Dellin, C. and Srinivasa, S. \A unifying formalism for
shortest path problems with expensive edge evaluations
via lazy best-rst search over paths with edge
selectors", ICAPS-2016, London, UK (2016).
11. Anand, S., Burke, E., Chen, T.Y., Clark, J., Cohen,
M.B., Grieskamp, W., Harman, M., Harrold, M.J., and
McMinn, P. \An orchestrated survey on automated
software test case generation", Journal of Systems and
Software, 86(8), pp. 1978-2001 (2013).
12. Do, T., Khoo, S.C., Fong, A.C.M., Pears, R., and
Quan, T.T. \Goal-oriented dynamic test generation",
Information and Software Technology, 66, pp. 40-57
(2015).
13. Saito, N. and Nishizeki, T. \Graph theory and algorithms",
17th Symposium of Research Institute of
Electrical Communication, Tohoku University, Sendai,
Japan (1980).
14. Prosser, R.T. \Applications of Boolean matrices to the
analysis of
ow diagrams", AFIPS Joint Computer
Conferences, Eastern Joint IRE-AIEE-ACM Computer
Conference (Boston, MA: ACM), pp. 133-138
(1959).
15. Aho, A.V., Lam, M.S., Sethi, R., and Ullman, J.D.,
Compilers, Principles, Techniques, and Tools, the 2nd
Ed., Pearson Addison Wesley, pp. 659-666 (2007).
16. Karp, R.M. \Reducibility among combinatorial problems",
In R.E. Miller and J.W. Thatcher (Eds.),
Complexity of Computer Computations, New York:
Plenum, pp. 85-103 (1972).
17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein,
C., Introduction to Algorithms, 2nd Ed., MIT Press
and McGraw-Hill, ISBN 0-262-03293-7 (2001).
18. Fraczak, W., Georgiadis, L., Miller, A., and Tarjan,
R.E. \Finding dominators via disjoint set union",
Journal of Discrete Algorithms, 23, pp. 2-20 (2013).
19. Fredman, M.L. and Tarjan, R.E. \Fibonacci heaps
and their uses in improved network optimisation algorithms",
Journal of the ACM, 34(3), pp. 596-615
(1987).
20. Hecht, M.S., Flow Analysis of Computer Programs,
Amsterdam: Elsevier North-Holland (1977).
21. DeMillo, R.A. and Outt, J. \Constraint-based automatic
test data generation", IEEE Transactions on
Software Engineering, 17(9), pp. 900-910 (1991).
22. Goldberg, A., Wang, T.C., and Zimmerman, D. \Applications
of feasible path analysis to program testing",
In 1994 International Symposium on Software Testing
and Analysis, Seattle, Washington, USA, pp. 80-94
(1994).