References:
1. Farnam, Y., Shekarchi, M., and Mirdamadi, A. "Experimental investigation of impact behavior of high strength fiber reinforced concrete panels", 2nd Int. Symp. on Ultra High Performance Concrete., Kassel, Germany, pp. 751-758 (2008).
2. Huang, W.H. "Properties of cement y ash grout admixed with bentonite, silica fume, or organic fiber", Cem. Concr. Res., 27(3), pp. 395-406 (1997).
3. Huang, W.H. "Improving the properties of cement y ash grout using fiber and superplasticizer", Cem. Concr. Res., 31(7), pp. 1033-1041 (2001).
4. Morgan, D.R., Mcaskill, N., Carette, G.G., and Malhotra, V.M. "Evaluation of polypropylene fiber reinforced high-volume y ash shotcrete", ACI Mater J., 89(2), pp. 169-177 (1992).
5. Mugume, R.B. and Takashi, H. "Effect of fibre type and geometry on maximum pore pressures in fibrereinforced high strength concrete at elevated temperatures", Cem. Concr. Res., 42, pp. 459-466 (2012).
6. Bangi, M.R. and Horiguchi, T. "Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures", Cem. Concr. Res., 41, pp. 1150-1156 (2011).
7. Saka, T. "Spalling potential of fire exposed structural concrete", Proc. of the 1st Int. Workshop on Concr. Spalling due to Fire Expos., Leipzig, Germany, pp. 3-5 (2009).
8. Khoury, G.A. "Polypropylene fibres in heated concrete, Part 2: Pressure relief mechanisms and modelling criteria", Mag. Concr. Res., 60, pp. 189-204 (2008).
9. Olivito, R.S. and Zuccarello, F.A. "An experimental study on the tensile strength of steel fiber reinforced concrete", Composites Part B: Eng., 41(3), pp. 246- 255 (2010).
10. Zhang, P. and Li, Q.-F. "Combined effect of silica fume and polypropylene fiberon drying shrinkage properties of concrete composites containing y ash", Scientia Iranica, 20(5), pp. 1372-1380 (2013).
11. Kalifa, P., Chene, G., and Galle, C. "High-temperature behaviour of HPC with polypropylene fibres - from spalling to microstructure", Cem. Concr. Res., 31, pp. 1487-1499 (2001).
12. Noumowe, A. "Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200C", Cem. Concr. Res., 35, pp. 2192-2198 (2005).
13. Zeiml, M., Leithner, D., Lackner, R., and Herbert, A.M. "How do polypropylene fibers improve the spalling behavior of in-situ concrete?", Cem. Concr. Res., 36, pp. 929-942 (2006).
14. Bilodeau, A., Kodur, V.K.R., and Hoff, G.C. "Optimization of the type and amount of polypropylene fibers for preventing the spalling of lightweight concrete subjected to hydrocarbon fire", Cem. Concr. Compos., 26, pp. 163-174 (2004).
15. Ozawa, M. and Morimoto, H. "Effects of various fibres on high-temperature spalling in high-performance concrete", Constr. Build. Mater., 71, pp. 83-92 (2014).
16. Kodur, V. "Properties of concrete at elevated temperatures", ISRN Civ. Eng., 2014, pp. 1-15 (2014).
17. Consoli, N.C., Vendruscolo, M.A., Fonini, A., and Rosa, F.D. "Fiber reinforcement effects on sand considering a wide cementation range", Geotext. Geomemb., 27(3), pp. 196-203 (2009).
18. Unterweger, C., Bruggemann, O., and Furst, C. "Effects of different fibers on the properties of short-fiberreinforced polypropylene composites", Combust. Sci. Technol., 13, pp. 49-55 (2014a).
19. Unterweger, C., Bruggemann, O., and Furst, C. "Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization", Polym. Compos., 35, pp. 227-236 (2014b).
20. Kayali, O., Haque, M.N., and Zho, B. "Some characteristics of high strength fibre reinforced lightweight aggregate concrete", Cem. Concr. Compos., 25, pp. 207-213 (2003).
21. Nili, M. and Afroughsabet, V. "Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete", Int. J. Impact Eng., 37(8), pp. 879-886 (2010).
22. Gonen, T. and Yazicioglu, S. "The influence of compaction pores on sorptivity and carbonation of concrete", Constr. Build. Mater., 21(5), pp. 1040-1045 (2007).
23. Basheer, L., Basheer, P.A.M., and Long, A.E. "Influence of meso-macro aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete", Constr. Build. Mater., 19(9), pp. 682-690 (2005).
24. Kumara, R. and Bhattacharjee, B. "Porosity, pore size distribution and in situ strength of concrete", Cem. Concr. Res., 33(1), pp. 155-164 (2003).
25. Tijani, A.I., Yang, J., and Dirar, S. "Enhancing the performance of recycled aggregate concrete with microsilica", Int. J. Struct. Civil Eng. Res., 4(4), pp. 347-353 (2015).
26. Maslennikov, S., Dmitrienko, V., Kokunko, I., and Dmitrienko, N. "Investigating the micro silica effect on the concrete strength", Matec Web of Conf., 106, pp. 25-30 (2017).
27. Subramanian, E.S., Arunkumar, P., and Arul, N. "Strength and durability properties of self-compacting concrete with micro silica and nano-silica", Int. Res. J. of Eng. and Tech., 04(01), pp. 146-149 (2017).
28. Khanzadi, M., Tadayon, H., and Sepehri, M. "Influence of nano-silica particles on mechanical properties and permeability of concrete", 2nd Int. Conf. on Sust. Const. Materials and Tech., Ancona, Italy, pp. 28-30 (2010).
29. Yermak, N., Pliya, P., Beaucour, A.-L., Simon, A., and Noumowe, A. "Influence of steel and/or polypropylene fibers on the behavior of concrete at high temperature: Spalling, transfer and mechanical properties", Const. Build. Mat., 132, pp. 240-250 (2017).
30. ASTM C1018 "Standard test method for flexural toughness and first crack strength of fiber reinforced concrete (using beam with third point loading)".
31. ASTM C496 "Standard test method for tensile strength of concrete".
32. ASTM C1920-5 "Standard test method for permeability and hydraulic conductivity of concrete".
33. ASTM C1084 "Standard test method for portlandcement content of hardened hydraulic-cement concrete.