References:
1. Aliaga, I., Rubio, A., and Sanchez, E. "Experimental quantitative comparison of different control architectures for master-slave teleoperation", IEEE Transactions on Control Systems Technology, 12(1), pp. 2-11 (2004).
2. Hua, C.-C., Yang, Y., and Guan, X. "Neural networkbased adaptive position tracking control for bilateral teleoperation under constant time delay", Neurocomputing, 113, pp. 204-212 (2013).
3. Garcia-Valdovinos, L.-G., Parra-Vega, V., and Arteaga, M.A. "Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay", Robotics and Autonomous Systems, 55(8), pp. 609-617 (2007).
4. Cho, H.C. and Park, J.H. "Impedance control with variable damping for bilateral teleoperation under time delay", JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 48(4), pp. 695-703 (2005).
5. Weber, C., Nitsch, V., Unterhinninghofen, U., Farber, B., and Buss, M. "Position and force augmentation in a telepresence system and their effects on perceived realism", Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, pp. 226-231 (2009).
6. Hannaford, B. "A design framework for teleoperators with kinesthetic feedback", IEEE Transactions on Robotics and Automation, 5(4), pp. 426-434 (1989).
7. Uddin, R. and Ryu, J. "Predictive control approaches for bilateral teleoperation", Annual Reviews in Control, 42, pp. 82-99 (2016).
8. Xu, X., Cizmeci, B., Schuwerk, C., and Steinbach, E. "Model-mediated teleoperation: Toward stable and transparent teleoperation systems", IEEE Access, 4, pp. 425-449 (2016).
9. Xu, X., Paggetti, G., and Steinbach, E. "Dynamic model displacement for model-mediated teleoperation", IEEE World Haptics Conference (WHC), Daejeon, Korea, pp. 313-318 (2013).
10. Xu, X., Schuwerk, C., and Steinbach, E. "Passivitybased model updating for Model-mediated Teleoperation", IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin, Italy, pp. 1-6 (2015).
11. Smisek, J., van Paassen, R.M., and Schiele, A. "Naturally-transitioning rate-to-force controller robust to time delay by model-mediated teleoperation", IEEE International Conference on Systems, Man, and Cybernetics (SMC), Hong Kong, pp. 3066-3071 (2015).
12. Willaert, B., Van Brussel, H., and Niemeyer, G. "Stability of model-mediated teleoperation: discussion and experiments", International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Tampere, Finland, pp. 625-636 (2012).
13. Lawrence, D.A. "Stability and transparency in bilateral teleoperation", IEEE Transactions on Robotics and Automation, 9(5), pp. 624-637 (1993).
14. Speich, J.E., Shao, L., and Goldfarb, M. "Modeling the human hand as it interacts with a telemanipulation system", Mechatronics, 15(9), pp. 1127-1142 (2005).
15. Achhammer, A., Weber, C., Peer, A., and Buss, M. "Improvement of model-mediated teleoperation using a new hybrid environment estimation technique", IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, pp. 5358- 5363 (2010).
16. Yazdankhoo, B. and Beigzadeh, B. "Improving transparency in bilateral teleoperation systems based on model-mediated approach", Modares Mechanical Engineering, 17(1), pp. 273-283 (2017) (in Persian).
17. Smith, A.C. and Hashtrudi-Zaad, K. "Neural networkbased teleoperation using Smith predictors", IEEE International Conference Mechatronics and Automation, Niagara Falls, Canada, 3, pp. 1654-1659 (2005).
18. Tarvirdizadeh, B., Khanmirza, E., Ebrahimi, M., Kalhor, A., and Vakilipour, S. "An efficient numerical and experimental system identification approach for a flexible manipulator", Engineering Computations, 32(8), pp. 2467-2490 (2015).
19. Park, D.-J. and Jun, B.-E. "Selfperturbing recursive least squares algorithm with fast tracking capability", Electronics Letters, 28(6), pp. 558-559 (1992).
20. Diolaiti, N., Melchiorri, C., and Stramigioli, S. "Contact impedance estimation for robotic systems", IEEE Transactions on Robotics, 21(5), pp. 925-935 (2005).
21. Haddadi, A. and Hashtrudi-Zaad, K. "Real-time identification of Hunt-Crossley dynamic models of contact environments", IEEE Transactions on robotics, 28(3), pp. 555-566 (2012).
22. Schindeler, R. and Hashtrudi-Zaad, K. "Polynomial linearization for real-time identification of environment Hunt-Crossley models", IEEE Haptics Symposium (HAPTICS), Pennsylvania, USA, pp. 173-178 (2016).
23. Sadeghi, M.S., Momeni, H.R., and Amirifar, R. "h1 and 11 control of a teleoperation system via LMIs", Applied Mathematics and Computation, 206(2), pp. 669-677 (2008).
24. Hilliard, T. and Pan, Y.-J. "Stabilization of asymmetric bilateral teleoperation systems for haptic devices with time-varying delays", American Control Conference, Washington, DC, USA, pp. 4538-4543 (2013).
25. Park, J.H. and Cho, H.C. "Sliding mode control of bilateral teleoperation systems with force-reflection on the internet", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Takamatsu, Japan, 2 pp. 1187-1192 (2000).
26. Tzafestas, C., Velanas, S., and Fakiridis, G. "Adaptive impedance control in haptic teleoperation to improve transparency under time-delay", IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, pp. 212-219 (2008).
27. Mitra, P. and Niemeyer, G. "Model-mediated telemanipulation", The International Journal of Robotics Research, 27(2), pp. 253-262 (2008).
28. Llewellyn, F. "Some fundamental properties of transmission systems", Proceedings of the IRE, 40(3), pp. 271-283 (1952).
29. Lee, D. and Spong, M.W. "Passive bilateral teleoperation with constant time delay", IEEE Transactions on Robotics, 22(2), pp. 269-281 (2006).
30. Cho, H.C., Park, J.H., Kim, K., and Park, J.-O. "Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay", IEEE International Conference on Robotics and Automation (ICRA), Seoul, Korea, 1 pp. 1025-1030 (2001).