Multi-period aerobic groundwater bioremediation system design; ACO approach

Authors

Department of Civil Engineering, Iran University of Science and Technology, Tehran, P.O. Box 16765-163, I.R. Iran

Abstract

The optimal groundwater bioremediation design problem is complex, nonlinear, and computationally expensive. In this paper, an improved Ant Colony Optimization (ACO) algorithm is employed for optimizing a groundwater bioremediation problem, and the BIOPLUMEII model is used to simulate aquifer hydraulics and the bioremediation process. Injection and extraction pumping rates and well locations are treated as decision variables. Optimization results show that the proposed approach performs better than the Genetic Algorithm (GA), Simulated Annealing (SA) and the hybrid SA-GA algorithm, called Parallel Recombinative Simulated Annealing (PRSA), and reduces the computational time of a number of function evaluations compared with the mentioned algorithms. Applying the optimal dynamic pumping strategy in the second stage reduces bioremediation costs by 13:3%.

Keywords


Volume 21, Issue 3
Transactions on Civil Engineering (A)
May and June 2014
Pages 479-469
  • Receive Date: 30 June 2014
  • Revise Date: 21 December 2024
  • Accept Date: 09 July 2017