A novel nano-composite scaffold for cartilage tissue engineering

Document Type : Article

Authors

1 Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, 8174613441, Iran

2 Department of Biomaterials, Nanaotechnology and Tissue Engineering, School of Advanced technology in Medicine, Isfahan university of Medical sciences, Isfahan, 8174673461, Iran

3 Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran

Abstract

In this study, a hybrid Poly (lactic-co-glycolic acid) (PLGA)/ Hyaluronic acid (Ha)/ Fibrin/ 45S Bioactive Glass (45SBG) nanocomposite scaffolds seeded with human Adipose-Derived Mesenchymal Stem Cells (hADMSCs) were investigated as a construct for osteoarthritis (OA), articular cartilage (AC), and subchondral bone defects therapies. The bioactivity and biodegradation of the nanocomposite scaffolds were assessed in simulated body fluid (SBF) and phosphate buffer saline (PBS) solution, respectively. Furthermore, MTT analysis was performed in order to determine attachment and viability of hADMSCs. Ultimately, results indicated that bioactivity were increased in nanocomposite scaffolds as compared to the pure PLGA scaffold. As well as, biodegradation assay exhibited that the addition of Ha, fibrin, and 45SBG nanoparticles could modify the degradation rate of PLGA. The nanocomposite scaffolds were not showed any cytotoxicity and the hADMSCs were attached on the scaffolds and proliferate properly. According to our investigation, it was concluded that using natural and synthetic polymers along with BG nanoparticles may provide a suitable construct and could show a beneficial role in AC tissue engineering and OA therapy.

Keywords

Main Subjects


References
1. Jayabalan, P., Tan, A.R., Rahaman, M.N., Bal, B.S.,
Hung, C.T., and Cook, J.L. Bioactive glass 13-
93 as a subchondral substrate for tissue-engineered
osteochondral constructs: a pilot study", Clin. Orthop.
Relat. Res., 469(10), pp. 2754-2763 (2011).
2. Chen, J.L., Duan, L., Zhu, W., Xiong, J., and
Wang, D. Extracellular matrix production in vitro in
cartilage tissue engineering", J. of Trans. Med., 8, pp.
14-15 (2014).
3. Wang, W., Li, B., Li, Y., Jiang, Y., Ouyang, H., and
Gao, C. In vivo restoration of full-thickness cartilage
defects by poly (lactide-co-glycolide) sponges lled
with brin gel, bone marrow mesenchymal stem cells
and DNA complexes", Biomaterials, 31, pp. 5953-5965
(2010).
4. Lanza, R., Langer, R., and Vacanti, J.P., Principles of
Tissue Engineering, Academic Press (2011).
5. Zhao, W., Jin, X., Cong, Y., Liu, Y., and Fu, J.
Degradable natural polymer hydrogels for articular
cartilage tissue engineering", J. Chem. Technol. Biot.,
88, pp. 327-339 (2013).
6. Rahman, R.A., Radzi, M.A.Z.A., Sukri, N.M., Nazir,
N.M., and Sha'ban, M. Tissue engineering of articular
cartilage: From bench to bed-side", Tissue. Eng.
Regen. Med., 12(1), pp. 1-11 (2015).
1822 M. Mehdikhani et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1815{1823
7. Garg, T., Singh, O., Arora, S., and Murthy R.
Sca old: a novel carrier for cell and drug delivery",
Crit. Revi. inThera. Drug. Carrier. Sys., p. 29 (2012).
8. Dumitriu, S., Polymeric Biomaterials, revised and
expanded: CRC Press (2001).
9. Gentile, P., Chiono, V., Carmagnola, I., and Hatton,
P.V. An overview of poly (lactic-co-glycolic) acid
(PLGA)-based biomaterials for bone tissue engineering",
Int. J. Mol. Sci., 15, pp. 3640-3659 (2014).
10. Tavakoli, E., Mehdikhani-Nahrkhalaji, M., Hashemi-
Beni, B., Zargar-Kharazi, A., and Kharaziha, M.
Preparation, characterization, and mechanical assessment
of poly (Lactide-co-Glycolide)/hyaluronic
acid/ brin/bioactive glass nano-composite sca olds
for cartilage tissue engineering applications", Procedia.
Mater. Sci., 11, pp. 124-130 (2015).
11. Mehdikhani-Nahrkhalaji, M., Fathi, M.H., Mortazavi,
V., Mousavi, S.B., Hashemi-Beni, B., and Razavi,
S.M. Novel nanocomposite coating for dental implant
applications in vitro and in vivo evaluation", J. Mater.
Sci. Mater. Med., 23, pp. 485-495 (2012).
12. Mehdikhani-Nahrkhalaji, M., Fathi, M.H., Mortazavi,
V., Mousavi, S.B., Hashemi-Beni, B., Razavi, S.B.,
Akhavan, A., and Haghighat, A. In vivo and in vitro
evaluation of poly (lactide-co-glycolide)/bioactive glass
nanocomposite coating", Adv. Mater. Res., 829, pp.
309-313 (2014).
13. Song, J.E., Kim, M.J., Yoon, H., Yoo, H., Lee,
Y.J., Kim, H.N., Lee, D., Yuk, S.H., and Khang,
G. E ect of hyaluronic acid (HA) in a HA/PLGA
sca old on annulus brosus regeneration: In vivo
tests", Macromol. Res., 21, pp. 1075-1082 (2013).
14. Jang, J.-D., Moon, Y.-S., Kim, Y.-S., Choi, N.-Y.,
Mok, H.-S., Kim, Y.-J., Shetty, A.A., and Kim, S.-J.
Novel repair technique for articular cartilage defect
using a brin and hyaluronic acid mixture", Tissue.
Eng. Regen. Med., 10(1), pp. 1-9 (2013).
15. Kim, H.J., Kim, K.K., Park, I.K., Choi, B.S., Kim,
J.H., and Kim, M.S. Erratum to: Hybrid sca olds
composed of hyaluronic acid and collagen for cartilage",
Tissue. Eng. Regen. Med., 9(4), pp. 231-231
(2012).
16. Sha0ban, M., Kim, S.H., Idrus, R., and Khang, G.
The use of brin and poly (lactic-co-glycolic acid) hybrid
sca old for articular cartilage tissue engineering:
an in vivo analysis", Eur. Cell. Mat., 15, pp. 41-52
(2008).
17. Hofmann, S. and Garcia-Fuentes, M. Bioactive scaffolds
for the controlled formation of complex skeletal
tissues", INTECH. Open. Access. Publ., 15, pp. 41-52
(2008).
18. Sha0Ban, M., Kim, S.H., Idrus, R.B., and Khang,
G. Fibrin and poly (lactic-co-glycolic acid) hybrid
sca old promotes early chondrogenesis of articular
chondrocytes: an in vitro study", J. Orthop. Surg.
Res., 3(1), pp. 1-10 (2008).
19. Subia, B., Kundu, J., and Kundu, S. Biomaterial
sca old fabrication techniques for potential tissue engineering
applications", Intech. Open. Access. Publisher.
(2010).
20. Hench, L.L. and Wilson, J., An Introduction to Bioceramics,
2nd Ed. Imperial College Press., p. 478 (2013).
21. Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung,
S.B., Bonewald, L.F., and Tomsia, A.P. Bioactive
glass in tissue engineering", Acta. Biomater., 7, pp.
2355-2373 (2011).
22. Kim, S.H. and Min, B-H. A new era of cartilage repair
using cell therapy and tissue engineering: turning
current clinical limitations into new ideas", Tissue.
Eng. Regen. Med., 9(5), pp. 240-248 (2012).
23. Niederauer, G.G., Slivka, M.A., Leatherbury, N.C.,
Korvick, D.L., Harro Jr, H.H., Ehler, W.C., Dunn,
C.J., and Kieswetter, K. Evaluation of multiphase
implants for repair of focal osteochondral defects in
goats", Biomaterials, 21(24), pp. 2561-2574 (2000).
24. Suominen, E., Aho, A.J., Vedel, E., Kangasniemi, I.,
Uusipaikka, E., and Yli-Urpo, A. Subchondral bone
and cartilage repair with bioactive glasses, hydroxyapatite,
and hydroxyapatite-glass composite", J. Biomed.
Mater. Res., 32(4), pp. 543-551 (1996).
25. Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung,
S.B., Bonewald, L.F., and Tomsia, A.P. Bioactive
glass in tissue engineering", Acta. Biomater, 7(6), pp.
2355-2373 (2011).
26. Ma, P.X. and Elissee , J., Sca olding in Tissue Engineering,
CRC press (2005).
27. Diba, M., Kharaziha, M., Fathi, M.H., Gholipourmalekabadi,
M., and Samadikuchaksaraei, A. Preparation
and characterization of polycaprolactone/
forsteritenanocomposite porous sca olds designed for
bone tissue regeneration", Compos. Sci. Technol., 72,
pp. 716-723 (2012).
28. Kokubo, T. and Takadama, H. How useful is SBF
in predicting in vivo bone bioactivity?", Biomaterials,
27, pp. 2907-2915 (2006).
29. Saadaldin, S.A., Dixon, S.J., Costa, D.O., and
Rizkalla, A.S. Synthesis of bioactive and machinablemiserite
glass-ceramics for dental implant applications",
Dent. Mater., 29, pp. 645-655 (2013).
30. Magyari, K., Stefan, R., Vulpoi, A., and Baia, L.
Bioactivity evolution of calcium-free borophosphate
glass with addition of titanium dioxide", J. Non-Cryst.
Solids, 410, pp. 112-117 (2015).
31. Mardani, M., Kabiri, A., Esfandiari, E., Esmaeili,
A., Pourazar, A., Ansar, M., and Hashemibeni, B.
The e ect of platelet rich plasma on chondrogenic
di erentiation of human adipose derived stem cells in
transwell culture", Iran J. Basic Med. Sci., 16(11), pp.
1163-1169 (2013).
32. Hauner, H., Entenmann, G., Wabitsch, M., Gaillard,
D., Ailhaud, G., Negrel, R., and Pfei er, E. Promoting
e ect of glucocorticoids on the di erentiation
M. Mehdikhani et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1815{1823 1823
of human adipocyte precursor cells cultured in a
chemically de ned medium", J. Clin. Invest., 84, pp.
1663-1670 (1989).
33. Hong, Z., Reis, R.L., and Mano, J.F. Preparation
and in vitro characterization of sca olds of poly (Llactic
acid) containing bioactive glass ceramic nanoparticles",
Acta. Biomater., 4, pp. 1297-1306 (2008).
34. Day, R.M., Maquet, V., Boccaccini, A.R., Jer^ome,
R., and Forbes, A. In vitro and in vivo analysis
of macroporous biodegradable poly (D, L-lactide-coglycolide)
sca olds containing bioactive glass", J.
Biomed. Mater. Res. A., 75, pp. 778-787 (2005).
35. Ho man, A.S. Hydrogels for biomedical applications",
Adv. Drug. Delivery. Rev., 64, pp. 18-23 (2012).
36. Orava, E., Korventausta, J., Rosenberg, M., Jokinen,
M., and Rosling, A. In vitro degradation of porous
poly (DL-lactide-co-glycolide)(PLGA)/bioactive glass
composite foams with a polar structure", Polym.
Degrad. Stab., 92, pp. 14-23 (2007).
37. Jackson, D.W., Lalor, P.A., Aberman, H.M., and
Simon, T.M. Spontaneous repair of full-thickness
defects of articular cartilage in a goat model", J. Bone.
Joint. Surg. Am., 83(1), pp. 53-53 (2001).
38. Nazemi, K., Moztarzadeh, F., Jalali, N., Asgari,
S., and Mozafari, M. Synthesis and characterization
of poly (lactic-co-glycolic) acid nanoparticles-loaded
chitosan/bioactive glass sca olds as a localized delivery
system in the bone defects", Biomed. Res. Int., pp. 1-9
(2014).
39. Spoliti, M., Iudicone, P., Leone, R., De Rosa, A.,
Rossetti, F.R., and Pierelli, L. In vitro release and
expansion of mesenchymal stem cells by a hyaluronic
acid sca old used in combination with bone marrow",
Muscles. Ligaments. Tendons. J., 2(4), pp. 289-294
(2012).
40. Wang, Y., Meng, H., Yuan, X., Peng, J., Guo, Q.,
Lu, S., and Wang, A. Fabrication and in vitro evaluation
of an articular cartilage extracellular matrixhydroxyapatite
bilayered sca old with low permeability
for interface tissue engineering", Biomed. Eng.
Online, 13(1), p. 80 (2014).
41. Snyder, T.N., Madhavan, K., Intrator, M., Dregalla,
R.C., and Park, D. A brin/hyaluronic acid hydrogel
for the delivery of mesenchymal stem cells and potential
for articular cartilage repair", J. Biol. Eng., 8, pp.
1-11 (2014).
42. Osathanon, T., Chuenjitkuntaworn, B., Nowwarote,
N., Supaphol, P., Sastravaha, P., Subbalekha, K.,
and Pavasant, P. The responses of human adiposederived
mesenchymal stem cells on polycaprolactonebased
sca olds: an in vitro study", Tissue Eng. Regen.
Med., 11(3), pp. 239-246 (2014).