Slip flow of nano fluid over a stretching vertical cylinder in the presence of non-linear thermal radiation and non-uniform heat source/sink

Document Type: Article


Department of Mathematics, The M. S. University of Baroda, Vadodara, Gujarat, India


An analysis is performed to study axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical stretching circular cylinder in the presence of non-linear radiative heat flux. The effects of non-uniform heat source/sink and slip flow are also taken into consideration. Water as conventional base fluid containing nanoparticles of Copper (Cu) is used. By means of similarity transformations, the governing partial differential equations are reduced into highly non-linear ordinary differential equations and then solved analytically using Homotopy Analysis Method (HAM). A comparison is made with the available results in the literature and our results are in very good agreement with the known results. A parametric study of the physical parameters is made and results are presented through graphs and tables. The results indicate that, the thermal boundary layer is thicker for non-linear thermal radiation problem when compared with that of linear thermal radiation. It also found that heat transfer rate at the surface decreases with the increase in both space and time dependent heat source/sink parameters.


Main Subjects