Refrences:
1.ACI Report on high-strength concrete, ACI 363R- 10", American Concrete Institute, Detroit, MI (2010).
2. Taylor, H.P. The fundamental behavior of reinforced concrete beams in bending and shear", Special Publication, 42, pp. 43-78 (1974).
3. Ramirez, J.A., French, C., Adebar, P., Bonacci, J., and Collins, M. Recent approaches to shear design of structural concrete", Journal of Structural Engineering, 124(12), p. 1374 (1998). 4. Ashraf, H., Elzanaty, A.H.N., and Floyd, O.S. Shear capacity of reinforced concrete beams using highstrength concrete", Journal Proceedings, 83(2), pp. 290-296 (1986). 5. Michael, P.C. and Daniel, K. How safe are our 724 A. Kaveh et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 709{725 large, lightly reinforced concrete beams, slabs, and footings?", Structural Journal, 96(4), pp. 482-490 (1999). 6. Maekawa, K., Toongoenthong, K., Gebreyouhannes, E., and Kishi, T. Direct path-integral scheme for fatigue simulation of reinforced concrete in shear", Journal of Advanced Concrete Technology, 4(1), pp. 159-177 (2006). 7. Hamrat, M., Boulekbache, B., Chemrouk, M., and Amziane, S. Shear behaviour of RC beams without stirrups made of normal strength and high strength concretes", Advances in Structural Engineering, 13(1), pp. 29-42 (2010). 8. Gebreyouhannes, E. and Maekawa, K. Numerical simulation on shear capacity and post-peak ductility of reinforced high-strength concrete coupled with autogenous shrinkage", Journal of Advanced Concrete Technology, 9(1), pp. 73-88 (2011). 9. Sagaseta, J. and Vollum, R. Inuence of aggregate fracture on shear transfer through cracks in reinforced concrete", Magazine of Concrete Research, 63(2), pp. 119-137 (2011). 10. Carrasquillo, R., Nilson, A., and Slate, F. Properties of high strength concrete subject to short-term loads", Journal Proceedings, 78(3), pp. 171-178 (2011). 11. Sarkar, S., Adwan, O., and Bose, B. Shear stress contributions and failure mechanisms of high strength reinforced concrete beams", Materials and Structures, 32(2), pp. 112-116 (1999) 12. Elsanadedy, H.M., Abbas, H., Al-Salloum, Y.A., and Almusallam, T.H. Shear strength prediction of HSC slender beams without web reinforcement", Materials and Structures, 49(9), pp. 3749-3772 (2015). 13. Gandomi, A., Alavi, A., and Yun, G. Nonlinear modeling of shear strength of SFRC beams using linear genetic programming", Structural Engineering and Mechanics, 38(1), pp. 1-25 (2011). 14. Gandomi, A.H., Alavi, A.H., Gandomi, M., and Kazemi, S. Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement", Measurement, 95, pp. 367-376 (2017). 15. Hasanipanah, M., Faradonbeh, R.S., Amnieh, H.B., Armaghani, D.J., and Monjezi, M. Forecasting blastinduced ground vibration developing a CART model", Engineering with Computers, 33(2), pp. 307-316 (2017). 16. Kaveh, A., Bakhshpoori, T., and Hamze-Ziabari, S.M. Derivation of new equations for prediction of principal ground-motion parameters using M50 algorithm", Journal of Earthquake Engineering, 20(6), pp. 910-930 (2016). 17. Kaveh, A., Hamze-Ziabari, S.M., and Bakhshpoori, T. Patient rule-induction method for liquefaction potential assessment based on CPT data", Bulletin of Engineering Geology and the Environment, pp. 1-17 (2017). 18. Khandelwal, M., Armaghani, D.J., Faradonbeh, R.S., Yellishetty, M., Majid, M.Z.A., and Monjezi, M. Classi _cation and regression tree technique in estimating peak particle velocity caused by blasting", Engineering with Computers, 33(1), pp. 45-53 (2017). 19. Nasrollahzadeh, K. and Basiri, M.M. Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system", Expert Systems with Applications, 41(4), pp. 1006-1020 (2014). 20. Shetty, N., Herbert, M.A., Shetty, R., Shetty, D.S., and Vijay, G. Soft computing techniques during drilling of bi-directional carbon _ber reinforced composite", Applied Soft Computing, 41, pp. 466-478 (2016). 21. Kaveh, A. and Bakhshpoori, T. A new metaheuristic for continuous structural optimization: water evaporation optimization", Structural Multidisciplinary Optimization, 54(1), pp. 23-43 (2016). 22. Kaveh, A. and Bakhshpoori, T. An accelerated water evaporation optimization formulation for discrete optimization of skeletal structures", Computers and Structures, 177, pp. 218-228 (2016). 23. Kaveh, A., Bakhshpoori, T., and Hamze-Ziabari, S.M. M50 and Mars based prediction models for properties of self-compacting concrete containing y ash", Periodica Polytechnica Civil Engineering, 62(2), pp. 1-17 (2017). 24. Kaveh, A., Bakhshpoori, T., and Hamze-Ziabari S.M. New model derivation for the bond behavior of NSM FRP systems in concrete", Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41(3), pp. 249-262 (2017). DOI:10.1007/s40996-017- 0058-z. 25. Kaveh, A., Hamze-Ziabari, S.M., and Bakhshpoori, T. Feasibility of pso-an_s-pso and ga-an_s-ga models in prediction of peak ground acceleration", International Journal of Optimization in Civil Engineering, 8(1), pp. 1-14 (2018). 26. Kaveh, A., Hamze-Ziabari, S.M., and Bakhshpoori, T. M50 algorithm for shear strength prediction of HSC slender beams without web reinforcement", International Journal of Modeling and Optimization, 7(1), pp. 48-53 (2017). 27. Ivakhnenko, A.G. Polynomial theory of complex systems", IEEE Transactions on Systems, Man, and Cybernetics, 1(4), pp. 364-378 (1971). 28. Ivakhnenko, A.G. and Ivakhnenko, G.A. Problems of further development of the group method of data handling algorithms. Part I", Pattern Recognition and Image Analysis c=c of Raspoznavaniye Obrazov i Analiz Izobrazhenii, 10(2), pp. 187-194 (2000). 29. Friedman, J.H. Multivariate adaptive regression splines", The annals of statistics, 19(1), pp. 1-67 (1991). A. Kaveh et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 709{725 725 30. ACI 318M-11, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute (2011). 31. Association CS, Design of Concrete Structures, Canadian Standard Association (2004). 32. Du B_eton FI, Model Code 2010: Final Draft, International Federation for Structural Concrete (2012). 33. British Standards Institution, Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings, British Standards Institution (2004). 34. CEB-FIP, MC90 C, Design of Concrete Structures, British Standard Institution, London (1993). 35. Concrete Structures, Standards Australia. Sydney (2009). 36. Engineers JSoC, Standard Speci_cations for Concrete Structures, Japan Society of Civil Engineers, JSCE Guidelines for Concrete (2010). 37. Cladera, A. and Mar__, A.R. Shear design procedure for reinforced normal and high-strength concrete beams using arti_cial neural networks. Part I: beams without stirrups", Engineering Structures, 26(7), pp. 917-926 (2004). 38. Muttoni, A. Punching shear strength of reinforced concrete slabs without transverse reinforcement", ACI Structural Journal, 105, Title no. 105-S42, pp. 440-450 (2008). 39. Amanifard, N., Nariman-Zadeh, N., Farahani, M., and Khalkhali, A. Modelling of multiple short-lengthscale stall cells in an axial compressor using evolved GMDH neural networks", Energy Conversion and Management, 49(10), pp. 2588-2594 (2008). 40. Frank, I.E. and Todeschini, R., The Data Analysis Handbook, Elsevier, 14 (1994). 41. Smith, G.N., Probability and Statistics in Civil Engineering, Collins London (1986). 42. Sahay, R.R. and Dutta, S. Prediction of longitudinal dispersion coe_cients in natural rivers using genetic algorithm", Hydrology Research, 40(6), pp. 544-552 (2009). 43. Kewley, R.H., Embrechts, M.J., and Breneman, C. Data strip mining for the virtual design of pharmaceuticals with neural networks", IEEE Transactions on Neural Networks, 11(3), pp. 668-679 (2000) 44. Collins, M. Evaluation of shear design procedures for concrete structures", A Report Prepared for the CSA Technical Committee on Reinforced Concrete Design (2001).