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Abstract. Shear failure of slender beams made of High Strength Concrete (HSC) is one
of the most crucial failures in designing reinforced concrete members. The accuracy of the
existing design codes for HSC, unlike the Normal Strength Concrete (NSC) beams, seems
to be limited in predicting shear capacity. This paper proposes a new set of shear strength
models for HSC slender beams without web reinforcement using conventional multiple
linear regression, advanced machine learning methods of Multivariate Adaptive Regression
Splines (MARS), and Group Method of Data Handling (GMDH) network. In order to
achieve high-�delity and robust regression models, this study employs a comprehensive
database including 250 experimental tests. Various in
uencing parameters, including the
longitudinal steel ratio, shear span-to-depth ratio, compressive strength of concrete, size of
the beam specimens, and size of coarse aggregate, are considered. The results indicate that
the MARS approach has the best estimation in terms of both accuracy and safety aspects
in comparison with regression methods and GMDH approach. Moreover, the accuracy
and safety of predictions of MARS model is also remarkably more than the most common
design equations. Furthermore, the robustness of the proposed models is con�rmed through
sensitivity and parametric analyses.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In the last 30 years, the application of High Strength
Concrete (HSC) has remarkably increased due to sig-
ni�cant development in building and materials technol-
ogy. Several advantages, including better mechanical
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properties, structural e�ciency, and economic bene�ts,
in terms of both structural and aesthetic aspects have
made the HSC a widely used material in the construc-
tion of high-rise buildings and long-span bridges in all
over the world. The de�nition of HSC has changed par-
allel to the development of its properties in recent years.
HSC can be de�ned as a concrete with compressive
strength which is signi�cantly beyond and more than
double from what is used in normal practice (normal
strength concrete, NSC). Di�erent design codes and
researchers proposed di�erent limits for compressive
strength of concrete to set a demarcation line between
NSC and HSC materials. The present study follows
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the de�nition of HSC by ACI 363R-10 [1], which is
de�ned as a concrete with compressive strength more
than 40 MPa.

One of the most crucial failures in reinforced
structures made of HSC or NSC materials is the
shear failure. Failure due to the shear in beams with
HSC is brittle and occurs suddenly without warning.
Several researchers have investigated experimentally
and analytically to evaluate shear carrying capacity
of reinforced concrete members. It has been found
that several mechanisms, including the shear transfer
in the compression zone, aggregate interlock across
crack face, stirrups crossing the shear crack, and dowel
action of longitudinal reinforcing bars crossing the
crack, can be involved in providing shear resistance
of Reinforced Concrete (RC) beams [2]. In beams
without web reinforcing stirrups, crossing the shear
crack mechanism cannot be considered as an internal
force that contributes to shear resistance. It is un-
derstood that the shear failure mechanism in concrete
members reinforced longitudinally, yet without trans-
verse reinforcement under bending, varies signi�cantly,
and the size of member and shear span-to-depth ratio
are the two main parameters that in
uence the shear
failure mechanism. In fact, the shear span-to-depth
ratio (a=d) determines the failure modes of RC beams
and divides them into deep beams (< 2:5) and slender
beams (> 2:5). For deep beams with a=d approxi-
mately less than 2.5, arch action occurs [3]. For slender
beams with a=d greater than 2.5, the shear strength
of reinforced member with longitudinal steel bars is a
function of a=d, too. For these members, a=d represents
the interacting e�ect of the moment and shear at a
section on the shear strength. Accurate prediction of
the shear behavior of the RC beams, unlike 
exural
behavior that can generally be predicted well, is a
challenging work due to the complexity of the shear
transfer mechanism.

Furthermore, there are remarkable di�erences
between NSC and HSC beams without web reinforce-
ment [4-10]. According to reports, the fracture surface
in HSC beams is smooth and develops along the
transition zone between the matrix and aggregates,
whereas it is rough in NSC beams. In addition, internal
shear transferring mechanisms contribute di�erently
to di�erent concrete strengths. At higher concrete
strength, the aggregate interlocking does not con-
tribute greatly because of the smooth fracture planes
and the straight cracks, which do not go around the
aggregate particles [11,12].

Shear strength prediction of HSC slender beams
without web reinforcement is still contentious. There
is no uni�ed rational theory explaining the interaction
of the three internal forces contributing to shear re-
sistance, especially for HSC. Various design equations
are available to estimate shear strength of reinforced

concrete beams without stirrups. Their accuracy, how-
ever, seems limited for slender reinforced HSC beams,
as these equations are empirically developed using
prede�ned forms with experimental data, generated
mainly for a limited number of in
uencing parameters.

Recently, machine-learning approaches have been
successfully employed to overcome these limitations in
many di�erent problems of civil engineering (e.g., [13-
25]). In this regard, particularly, Elsanadedy et al. [12]
very recently applied regression models and Arti�cial
Neural Networks (ANN) to predict the shear strength
of HSC slender RC beams without stirrups. Their
results showed that ANN approach generally provided
better predictions than regression approach did, in
terms of accuracy. However, ANN implementation
su�ers from several drawbacks. The major disadvan-
tage of this approach is that the ANN training process
is achieved through a gradient descent algorithm on
the error space, which can be very complex and may
contain many local minima. Furthermore, trial-and-
error processes are required to determine the network
structure. In addition, ANN method does not give
enough insight into the generated models and is not
as easy to be used as the empirical formulas.

Considering these drawbacks and the existing
unsatisfactory equations, Kaveh et al. [26] very recently
successfully used M50 algorithm as one of the model-
tree based algorithms used in developing predictive and
simple formulas to estimate the shear strength of HSC
slender beams without stirrups. This paper illustrates
the potential of two more e�cient alternative machine-
learning-based approaches to this problem. Among
soft computing approaches, the Group Method of Data
Handling (GMDH) network and (multivariate adaptive
regression splines) MARS algorithms are known as
self-organized and non-parametric methods to model
and discover the behaviors of unknown or complicated
systems based on given input-output data points [27-
29]. The main advantage of GMDH and MARS
methods in comparison with ANN method is that the
dependencies between input parameters and output
parameter are represented in parametric form as an
equation, while these dependencies are hidden within
neural network structures in ANN method.

To develop new predictive models based on
GMDH and MARS, a comprehensive existing database
was employed very recently, used by Elsanadedy et
al. [12], that contained 250 experimental tests. The
developed GMDH model related shear capacity to the
longitudinal steel ratio, the shear span-to-depth ratio,
compressive strength of concrete, the size of the beam
specimens, and the size of coarse aggregate. The results
of the developed GMDH and MARS were compared to
the most common existing equations and to multiple
nonlinear regression (MNLR) approach developed in
this study through statistical error indicators. Results
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con�rmed that the developed GMDH and MARS
models outperformed the existing equations and the
developed regression-based equations in terms of both
accuracy and safety aspects. The relative importance
of signi�cant parameters dealing with shear strength
was also investigated through sensitivity analysis. The
robustness of the proposed models was also veri�ed
through a parametric analysis.

This paper is outlined as follows: The existing
design equations and their limitations are given in the
following section. The GMDH and MARS algorithms
are described next in Section 3. The applied dataset
and modeling process are presented in Section 4 fol-
lowed by the results and discussion section. Finally, the
summary and conclusion are presented in Section 6.

2. Design equations for shear strength

2.1. Design equations
The existing equations for estimating shear capacity
of RC beams (V ) are presented in Eqs. (1) to (8).
A signi�cant gap exists in the process of selecting
the main parameters and their e�ects on V , because
these equations have been empirically derived. In the
following equations b is beam width; d is the e�ective
depth of beam; h beam depth; dv e�ective shear depth;
f 0c speci�ed compressive strength of concrete; fck char-
acteristic compressive cylinder strength of concrete;
a shear span; ag speci�ed nominal maximum size of
coarse aggregate; Es modulus of elasticity of steel; As
area of tension steel; � longitudinal steel ratio; Mu and
Vu factored moment and shear force, respectively; Mf
and Vf factored moment and shear force, respectively;
MEd and VEd design moment and shear force; � factor
accounting for concrete density (units are N and mm).

ACI 318-11 [30]:

V =
�

0:16
p
f 0c + 17�

Vud
Mu

�
bd � 0:29

p
f 0cbd: (1)

CSA A23.3-04 [31]:

V = ��
p
f 0cbdv;

where:

� =
0:4

(1 + 500"x)
� 1300

(1000 + sze)
;

"x =
Mf=dv + Vf

2EsAs
� 0:003;

sze =
35dv

15 + ag
� 0:85dv: (2)

Fib Model Code [32]:

V = kv
p
fckbz

where:

kv =
0:4

1 + 1500"x
� 1300

1000 + kdgz
;

"x =
MEd=z + VEd

2EsAs
� 0:003;

kdg =
32

16 + ag
� 0:75;

z = 0:9d: (3)

Eurocode-2 [33]:

V = 0:18k 3
p

100�fckbd � 0:035
p
k3fckbd;

where:

k = 1 +
r

200
d
� 2: (4)

CEB-FIP Model Code [34]:

V = 0:15 3

s
3
a=d

� 3
p

100�fckbd;

where:

� = 1 +
r

200
d

(5)

AS 3600-2009 [35]:

V = �1�2�3 3
p
�fcvbd;

where:

�1 = 1:1
�

1:6� d
1000

�
;

�2 = 1:0 for beams without axial force;

1 � �3 =
2
a=d
� 2;

fcv = 3
p
fck � 4 MPa: (6)

JSCE Guidelines [36]:

V = �d�pfvcdbd;

�d = 4

r
1000
d
� 1:5; �p = 3

p
100� � 1:5;

fvcd = 0:2 3
p
fck � 0:72 MPa: (7)

Cladera and Mari [37]:

V = 0:225�
p

100�f 0c
0:2bd;

where:

� = 1 +
r

200
0:9d

� 2:75;

� � 0:02
�

1 +
f 0c

100

�
: (8)
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Table 1. Details of existing design equations and their performances in predicting shear strength of slender HSC beams.

Equations
or models

Eqs.

Design parameters Statistical parameters
on Vmeasured=Vpredicted

b d A ag
f 0c � (%)

M STD COV
Limitation Limitation

ACI 318-11 (1) O O | | O � 65 MPa O | 1.28 0.48 0.23

CSA A23.3-04 (2) O O | O O � 64 MPa | | 1.62 0.61 0.38

�b Model Code (3) O O | O O � 64 MPa | | 1.59 0.60 0.36

Eurocode-2 (4) O O | | O � 90 MPa O � 0:02 1.09 0.35 0.12

CEB-FIP Model (5) O O O | O | O | 1.24 0.29 0.08

AS 3600-2009 (6) O O O | O � 64 MPa O | 1.12 0.28 0.08

JSCE Guidelines (7) O O | | O � 47 MPa O � 0:03 1.35 0.38 0.14

Cladera and Mari [37] (8) O O | | O � 60 MPa O � g(f 0c) 1.27 0.31 0.10

GMDH (proposed) (19) O O O O O | O | 1.01 0.17 0.03

MARS (proposed) (20) O O O O O | O | 1.02 0.10 0.01

2.2. Limitations

Table 1 summarizes the main design parameters in-
cluded in Eqs. (1) to (8). According to this table,
all design equations put maximum limitation on f 0c
except CEB-FIP [34] model. Most of these maximum
limitations are around 65 MPa, while f 0c for HSC
slender beams without web reinforcement has been
recorded notably more than the aforementioned value
in �eld or laboratory. The statistical error parameters
in terms of average (M), Standard Deviation (STD),
and Coe�cient Of Variation (COV) between the stan-
dardized ith predicted and measured values of V are
presented. It can be expected that the performance
of these equations for slender beams made of HSC be
limited, as is clear in Table 1.

In addition, there is inconsistency between the
existing equations for predicting shear strength. For
example, the portions of longitudinal steel reinforce-
ment contributing to V are given by �1=3 in equations
of Eurocode-2 [33], CEB-FIP [34] model code, AS
3600 [35], and JSCE [36], whereas its contributions to
study of Cladera and Mari [37] and ACI 318-11 [30] are
proportional to �1=2 and �, respectively. Furthermore,
some codes (Eurocode-2 [33], CEB-FIP [34] model, AS
3600 [35], and JSCE [36]) consider the shear strength
of HSC beams proportional to f 01=3c , while other
codes (ACI 318-11 [30], CSA A23.3-04 [31], and �b
model [32]) consider it to be proportional to f 01=2c . This
proportion was also reported as f 0kkk0:2

c by Cladera
and Mari [37].

Furthermore, according to Table 1, some impor-
tant parameters were not incorporated in most of these
design codes. For example, the in
uence of the nominal

maximum size of coarse aggregate only was considered
in CSA A23.3-04 [31] and level II approximation of
the �b model [32] code, whereas dependency of HSC
shear strength on this parameter was reported by
Muttoni [38]. Only CEB-FIP [34] model and AS
3600 [35] consider the e�ect of shear span-to-depth
ratio on shear strength of slender HSC beams. In
addition, ACI 318-11 [30] does not consider the e�ect of
depth, d, whereas other design equations show notable
sensitivity to the change of parameter d.

To take full advantage of the HSC RC beam, gen-
erating new models to predict the shear capacity to ob-
tain both reliability and accuracy is indispensable. Re-
cently, machine-learning approaches have been widely
applied to engineering problems. The main advantage
of these approaches can be mentioned as they consid-
ered all possible relations between input and output
parameters and checked di�erent combinations of input
parameters for estimating output parameter, unlike the
regression approaches. In the following section, Multi-
variate Adaptive Regression Splines (MARS), Group
Method of Data Handling (GMDH) network, and
Multiple Nonlinear Regression methods (MNLR) are
introduced in this study to predict the shear strength
of HSC slender beams without web reinforcement.

3. Soft computing approaches

Recently, the soft computing approaches, such as Ar-
ti�cial Neural Networks (ANN) and Adaptive Neuro-
Fuzzy Inference System (ANFIS), have been employed
as useful tools for modeling and forecasting complex
structural engineering problems. Among these meth-
ods, the Group Method of Data Handling (GMDH)
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network and Multivariate Adaptive Regression Splines
(MARS) have not yet been applied widely in structural
engineering. The main advantage of GMDH and
MARS methods in comparison with ANN method is
that the dependency between input parameters and
responses is represented in parametric form as an
equation, while these dependencies are hidden within
neural network structures in ANN method. Besides,
ANN methods need an essential time for learning;
therefore, it is di�cult to apply it for modeling and
forecasting under real-time systems. The descriptions
of the GMDH network, the MARS, and Multiple
Nonlinear Regression methods (MNLR) are discussed
as follows.

3.1. Multivariate adaptive regression splines
Multivariate Adaptive Regression Splines (MARS) is a
nonlinear and nonparametric intelligent computing re-
gression algorithm that models the nonlinear responses
between the inputs and outputs of a system using a
series of piecewise linear or cubic segments (splines).
The resulting piecewise equation is known as Basis
Functions (BFs). The slope of regression function is
allowed to change from one segment to the next. The
end points of each segment are called knots. A knot
marks the end of one region of data and the beginning
of another. Unlike the well-known parametric linear
regression analysis, MARS provides greater 
exibility
to explore nonlinear relation between a response vari-
able and predictor variables. In addition, MARS also
searches for possible interactions between variables by
checking all degrees of interactions. Because it allows
for all functional forms and interactions, MARS is
able to track the complex data structures from high-
dimensional datasets. The general MARS function can
be expressed using the following equation:

~f(x) = �0 +
MX
m=1

�m�m(x); (9)

where ~f(x) is the predicted response, �0 and �m are
constants, which are estimated to yield the best data
�t, and M is the number of basis functions included
into the model. The basis function in MARS model
can be either one single spline function, or a product
of two or more spline functions for di�erent predictor
variables. The spline basis function, �m(x), can be
speci�ed as follows:

�m(x) =
kmY
k=1

[skm(xv(k;m) � tk;m)]; (10)

where km is the number of knots, skm takes either 1 or
-1 and indicates the right/left regions of the associated
step function, v(k;m) is the label of the predictor vari-
able, and tk;m is the knot location. MARS generates

basis functions by searching in a stepwise way. An
adaptive regression algorithm is used to select the knot
locations. An optimal MARS is developed through a
two-stage forward and backward procedure. In the
forward stage, MARS over�ts data by considering a
great number of basis functions. In the backward
stage, to avoid over�tting, redundant basis functions
are deleted from Eq. (9). MARS adopts Generalized
Cross-Validation (GCV) to delete the redundant basis
functions. The expression of GCV is given as follows:

GCV =

1
N

NP
i=1

h
yi � f̂(xi)

i2h
1� C(B)

N

i2 ; (11)

in which N is the number of data, and C(B) is a
complexity penalty that increases with the number of
Basis Function (BF) in the model. It is de�ned as
follows:

C(B) = (B + 1) + dB; (12)

where d is a penalty for each BF included into the
model, and B is the number of basis functions [24].

3.2. Group method of data handling
Group Method of Data Handling (GMDH) is a learning
machine based on the polynomial theory of complex
systems [22]. From this network, the most signi�cant
input parameters, the number of layers, the number
of neurons in middle layers, and optimal topology
design of the network are de�ned automatically. The
structure of the GMDH network is con�gured through
the training stage with polynomial model, which pro-
duces the minimum error between the predicted value
and observed output. The formal de�nition of the
system identi�cation problem is to �nd an approximate
function, f̂ , that can be used to predict actual output,
ŷ, or a given input vector, X = (x1; x2; � � � ; xn), as
close as possible to actual output, y. Therefore, n
observations of multi-input-single-output data pairs are
considered as follows:

yi=f (xi1; xi2; xi3; � � �xin) ; i=1; 2; � � � ;M: (13)

The general relationship between input and output
variables can be expressed by a complicated discrete
form of the Volterra function as a series in the form of:

y = w0 +
nX
i=1

wixi +
nX
i=1

nX
j=1

wijxixj

+
nX
i=1

nX
j=1

nX
k=1

wijkxixjxk + � � � ; (14)

which is known as the Kolmogorov-Gabor polyno-
mial [39]. In the present study, a quadratic polynomial
of the GMDH network is used that is written as:
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Quadratic: ŷ = w0 + w1xi + w2xj + w3xixj

+ w4x2
i + w5x2

j : (15)

The weighting coe�cients of Eq. (14) are calculated
using regression techniques such that the di�erence
between actual output, y, and the calculated value,
ŷ, for each pair of xi and xj as input variables is
minimized. In this way, the weighting coe�cients of
quadratic function Gi are obtained to optimally �t the
output to the whole set of input-output data pairs,
de�ned as follows:

E =

MP
i=1

[yi �Gi()]2
M

! min : (16)

In this study, the GMDH network is improved using a
back propagation algorithm. This method includes two
main steps:

1. Weighting coe�cients of the quadratic polynomial
are determined using the least squares method from
the input layer to output layer in the form of a
forward path;

2. Weighting coe�cients are updated using a back-
propagation algorithm in a backward path. This
procedure may continue until the error of the
training network (E) is minimized.

3.3. Multiple nonlinear regression method
Let y be a dependent variable and have a nonlinear
relation with n independent variables as x1; x2; � � � ; xn.
The nonlinear relation between them can be expressed
as:

y = a0xa1
1 xa2

2 � � �xann : (17)

By applying logarithmic transformation, the following
equation can be obtained as follows:

log y = log a0 + a1 log x1 + a2 log x2 + � � �
+ an log xn; (18)

where coe�cients a0; a1; � � � , an can be determined by
applying the least squares method, similar to Multi-
Linear Regression (MLR) method.

4. Model development

4.1. Model inputs and outputs
Five variables were presented to the MARS, GMDH,
and MNLR as model inputs including the e�ective
depth (d), the shear span-to-depth ratio (a=d), the
compressive strength of concrete (f 0c), the aggregate
size-to-depth ratio (ag=d), and the longitudinal steel
ratio (�). The single model output is concrete shear
capacity, vu.

4.2. Data division and pre-processing
The data used to calibrate and validate MARS,
GMDH, and MNLR models obtained from the liter-
ature include a series of 250 concrete shear capacity
tests, compiled by Elsanadedy et al. [12] from 33 exper-
imental studies performed between 1957 and 2013. All
selected beams are without stirrups, and they were lon-
gitudinally reinforced with non-prestressed steel rebars.
Only slender beams with a=d � 2:5, whose failures
primarily occur due to shear, were considered. The
specimens were monotonically loaded using either one
or two concentrated loads until failure. Details of the
data used can be found in [12].

The available data were randomly divided into
two sets: a training set for model calibration and
an independent validation set for model veri�cation.
The validation dataset was used to specify the gen-
eralization capability of the models to new data with
which they had not been trained. In other words, the
testing data were applied to measure the performance
of the models obtained by the proposed algorithms
when applied to dataset, which played no role in
building the models. The statistics of the data used
in the training and validation sets are given in Table 2,
which include the mean, standard deviation (STD),
minimum, and maximum. For more visualization, a
matrix-plot of input and output parameters is repre-
sented in Figure 1. This plot presents all possible
scatter plots of input and output parameters one by
one. The plots in the diagonal of this matrix are the
histograms of input and output parameters for the
whole data points. As shown, most of data points
are concentrated in the ranges of d � 400 mm, f 0c �

Table 2. Ranges of input and output parameters for
training and testing sets.

Variable Subset Min Max Mean STD

d (mm) Training 133 925 284.88 158.94
Testing 135 718 255.98 96.99

a=d Training 2.46 6.1 3.59 0.86
Testing 2.47 6.1 3.66 0.89

ag=d
Training 0.01 0.17 0.06 0.02
Testing 0.02 0.17 0.06 0.02

f 0c (MPa) Training 42.5 183 65.40 21.44
Testing 45.3 155 64.56 20.75

� (%) Training 0.33 6.64 2.17 1.31
Testing 0.33 6.64 2.29 1.26

V (kN) Training 0.48 4.08 1.72 0.78
Testing 0.57 3.85 1.8 0.70
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Figure 1. Matrix plot of input and output parameters.

100 MPa, and � � 4 (%). It should be noted that
the derived model could be more reliable in these
ranges.

Out of the 250 tests, 200 data vectors (80%)
were taken for the training process. The remaining
50 data vectors (20%) were used to test the models. It
should be noted that, like other empirical models, the
proposed models are only valid for the ranges in which
they are trained and show better performance in those
ranges in which data are denser.

4.3. Derived models
Following data division, training dataset was presented
to GMDH, MARS, and MNLR algorithms for model
training. The MARS model returned the following
equation for concrete shear capacity:

vu (kN) = 5:4� 3:5� BF1 + 22� BF2 + 41

� BF3 � 0:079� BF4 + 0:078� BF5 � 0:049

� BF6 + 0:054� BF7 � 0:54� BF8 + 38

� BF9 + 0:096� BF10 � 0:47� BF11 � 3:6

� BF12 + 31� BF13 + 700� BF14 � 4100

� BF15 � 16� BF16 � 15� BF17 + 1:7

� BF18 + 4:3� BF19 � 0:09� BF20 � 0:79

� BF21 � 23� BF22 � 0:15� BF23 + 0:48

� BF24+ 17�BF25+ 0:093�BF26+ 6:8�10�5

� BF27 + 2:4� BF28: (19)

Table 3 lists the BFs and their corresponding
equations. It should be noted that, based on Table 3, 28
BFs and 19 BFs with interaction terms are integrated
in this model, indicating that the model is not simply
additive and that interaction terms play a signi�cantly
important role. The �nal model of MARS (Eq. (19))
is achieved via GCV obtained from forward selection
and backward deletion process. As observed, one of
the advantages of MARS algorithm is that it not only
captures complex relationships between independent
and dependent variables, but also does not require
additional e�ort to verify a priori assumption about the
relationship between the set of independent variables
and dependent response variable. The latter feature
becomes more important as the dimension of the
problem increases.
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Table 3. Basis functions of the developed MARS model.

Basis functions Equations

BF1 max(0; �� 3:2)
BF2 max(0; 3:2� �)
BF3 max(0; 2:5� a=d)
BF4 max(0; d� 190)
BF5 max(0; d� 230)
BF6 max(0; 230� d)
BF7 max(0; 170� d)
BF8 max(0; a=d� 2:5)�max(0; 1:4� �)
BF9 max(0; 230� d)�max(0; 0:061� ag=d)�max(0; 3:9� a=d)
BF10 max(0; 360� d)�max(0; 0:077� ag=d)
BF11 BF10�max(0; �� 4)
BF12 BF9�max(0; 60� f 0c)
BF13 max(0; 230� d)�max(0; 0:061� ag=d)�max(0; a=d� 3)
BF14 max(0; 230� d)�max(0; 0:061� ag=d)�max(0; 3� a=d)
BF15 max(0; 230� d)�max(0; 0:061� ag=d)�max(0; �� 3:2)
BF16 max(0; 230� d)�max(0; 0:061� ag=d)�max(0; 3:2� �)
BF17 max(0; 230� d)�max(0; �� 1:4)�max(0; 0:063� x3)
BF18 BF5�max(0; ag=d� 0:068)
BF19 max(0; �� 3:4)
BF20 max(0; 310� d)�max(0; 0:076� ag=d)�max(0; 6� a=d)
BF21 max(0; d� 170)�max(0; ag=d� 0:071)
BF22 max(0; 3:2� �)
BF23 max(0; a=d� 2:5)�max(0; �� 1)
BF24 max(0; a=d� 2:5)�max(0; 1� �)
BF25 max(0; 230�d)�max(0; ag=d�0:061)�max(0; ��3:2)�max(0; 3�a=d)�max(0; f 0c�64)
BF26 max(0; d� 170)�max(0; 0:071� ag=d)�max(0; �� 3:3)
BF27 max(0; 360� d)�max(0; f 0c � 70)
BF28 BF3�max(0; f 0c � 54)

GMDH algorithm returned the following selective
polynomials to predict concrete shear capacity of HSC
slender beams:

Layer 1:

L1 =� 1:7 + 1:3�+ 1:1
�a
d

�
+ 0:02d

+0:27
�a
d

�
��0:004d��0:009d

�a
d

��0:18�2

�0:18
�a
d

�2�1:5�10�5d2�0:00041d
�a
d

�
�

�0:026
�a
d

�
�2�0:016

�a
d

�2
�+0:00059d�2

+ 0:0014d
�a
d

�2
+ 2:9� 10�6d2�

+2�10�6d2
�a
d

�
+0:0067�3�0:0094

�a
d

�3

+ 4:3� 10�9d3: (20a)

Layer 2:

vu (kN) = 2:5� 1:4L1 � 0:03f 0c � 25
�ag
d

�
+ 0:0017f 0cL1 + 42

�ag
d

�
L1 + 0:7

�ag
d

�
f 0c

+ 0:42L2
1 + 7:9� 10�5f 02c � 4:1� 102

�ag
d

�2

� 0:3
�ag
d

�
f 0cL1 + 0:0095f 0cL2

1

� 6:7� 10�5f 02cL1 � 7:1
�ag
d

�
L2

1
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�0:0039
�ag
d

�
f 02c+6

�ag
d

�2
L1+2:6

�ag
d

�2
f 0c

�0:092L3
1+1:2� 10�6f 03c+7200

�ag
d

�3
: (20b)

To further evaluate the proposed MARS and GMDH
models against the most common regression ap-
proaches, a new regression equation was developed
using MNLR as follows:

vu = 14:50d�0:39
�a
d

��0:62
f 00:12
c �0:45: (21)

To analytically evaluate the performances of the devel-
oped models, the following statistical error parameters
were applied: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), correlation coe�cient (R), and
coe�cient of determination (R2).

MAE =

NP
i=1
jPi �Oij
N

; (22)

RMSE =

vuut 1
N

NX
i=1

(Pi �Oi)2; (23)

R =

NP
i=1

(Pi � Pm)(Oi �Om)p
(Pi � Pm)2

p
(Oi �Om)2

; (24)

R2 = 1�
NP
i=1

(Oi � Pi)2

NP
i=1

(Oi �Om)2
; (25)

where Oi is the measured value, Pi stands for the
prediction values, N is the number of data points,
Om is the mean value for observation, and Pm is the
mean value of prediction. The correlation coe�cient
(R) is a measure of the relative correlation between
the predicted and measured values. R values ranged
between �1 and 1. If R value is close to 1, it indi-
cates that there is a direct linear relationship between
measured and predicted values. However, R does
not necessarily indicate the goodness of the model's
performance, particularly when the range of data is
very wide and the data points are distributed around
their mean. Therefore, the coe�cient of determination,
R2, can be used as an unbiased estimate and, also, a
better measure for evaluating the model's performance.
The MAE and RMSE measure the di�erence between
predicted and measured values, and values near to zero
indicate a close match.

5. Results and discussion

The results of developed models and the most common

design equations to predict shear strength of HSC slen-
der beams without web reinforcement were compared
in this section. Moreover, the in
uence of important
parameters on shear strength was investigated through
parametric and sensitivity analyses. The most impor-
tant predictive parameters were determined through
sensitivity analysis in predicting shear strength. Fi-
nally, safety analysis was done by using demerit point's
classi�cations of Collins.

5.1. Performance analysis
The number of data used to develop a new predictor
model based on machine-learning approaches plays a
crucial role in modeling process. For developing a
reliable model based on data mining approaches, Frank
and Todeschini [40] suggested that the minimum ratio
between the number of data used and the number of
involved variables should be 3. A safer value of 5
can be more conservative. In the present study, this
ratio is remarkably higher and is equal to 250=6 =
41:66. The performances of the developed MARS
and GMDH models shown in Figure 2(a) and (b)
demonstrate that there are little scatter around optimal
line between measured and predicted shear strengths
for both training and testing datasets. For further
veri�cation of the developed models, analytical analysis
of statistical error parameters for training and testing
datasets is presented in Table 4. In addition, the results
of the developed MNLR method in this study were
compared with those of the other proposed ones.

Smith [41] suggested that if jRj > 0:8, it can
be expected that there is a strong correlation between
observed and predicted values. It should be recognized
that even if R is close to 1, the predicted and observed
values may not match each other; they only tend
to vary similarly. To compensate for this limitation,
coe�cient of determination R2 can be used. To achieve
precise results, R2 values should be close to 1. In

Table 4. Performance of GMDH and regression models in
predicting bond strength for training and testing datasets.

Subset MAE RMSE R R2

Training
MARS 0.1405 0.1849 0.9715 0.9438
GMDH 0.2223 0.2983 0.9241 0.8537
MNLR 0.2741 0.3626 0.8866 0.7839

Testing
MARS 0.1395 0.1902 0.9630 0.9253
GMDH 0.2592 0.3670 0.8519 0.7217
MNLR 0.2684 0.3831 0.8414 0.6966

Total
MARS 0.1403 0.1860 0.9699 0.9408
GMDH 0.2297 0.3132 0.9122 0.8321
MNLR 0.2729 0.3668 0.8789 0.7697
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Figure 2. Comparison between measured and predicted
shear strengths (V (kN)) by (a) MARS and (b) GMDH
models for training and testing datasets.

all cases, RMSE and MAE should be close to zero.
As shown in Table 4, the MARS model outperformed
GMDH and MNLR models in terms of accuracy for

both training and testing datasets. For example, the
MARS model decreased RMSE value by 40.6% and
49.2% and increased R2 values by 13% and 22.2% with
respect to GMDH and MNLR models, respectively. Of
note, the performances of the developed GMDH and
MNLR models were acceptable, and GMDH outper-
formed the MNLR model. Lower accuracy of MNLR
can be attributed to its limitations in predicting the
phenomenon with a highly nonlinear relationship or
with multiple criteria.

The results of the developed models are also
compared with those obtained from the widely avail-
able design codes and standards including ACI 318-
11 [30], CSA A23.3-04 [31], �b model code [32],
Eurocode-2 [33], CEB-FIP [34] model code, AS 3600-
2009 [35], JSCE [36] guidelines, and Cladera and
Mari [37] in Table 5. In general, the accuracy of
design codes is remarkably limited in predicting the
shear strength of HSC slender beams without web
reinforcement, especially ACI 318-11, CSA A23.3-
04, �b model code, and JSCE guidelines. In fact,
these design codes, except CEB-FIP models, were not
exclusively suggested for HSC slender beams with-
out web reinforcement and had limitations on the
maximum value of f 0c (ACI 318-11 [30], CSA A23.3-
04 [31], �b model code [32], Eurocode-2 [33], model
code, AS 3600-2009 [35], JSCE [36] guidelines, and
Cladera and Mari [37]) or on the percentage of tension
steel (Eurocode-2 [33] and Cladera and Mari [37]).
Therefore, most of these equations cannot correctly
be employed to predict the shear strength of HSC
slender beams. Although AS 3600-2009 [35] model had
the best performance amongst the other design codes,
which had R2 of 0.50 (highest) and RMSE of 0.54 MPa
(lowest), this model performed signi�cantly lower than
the three developed models of GMDH, MARS, and
MNLR did. For example, MARS model improved
RMSE and R2 by 65.5% and 88%, respectively, in
comparison with the best design code. Thus, the

Table 5. Performance of existing equations for prediction of shear strength of slender HSC beams.

Model MAE RMSE R R2

ACI31811 0.5891 0.7939 0.6676 -0.0787
CSAA23304 0.6976 0.9358 0.5289 -0.4988
Fib 0.6895 0.9254 0.5252 -0.4656
Eurocode2 0.4341 0.6161 0.7311 0.3503
CEBFIP 0.4273 0.6059 0.8498 0.3718
AS36002009 0.3758 0.5402 0.8241 0.5005
JSCE 0.5430 0.7525 0.8188 0.0307
Cladera and Mari [37] 0.4540 0.6399 0.8104 0.2992
Elsanadedy et al. [12] 0.7043 0.8346 0.8777 -0.1921
MNLR (this study) 0.2729 0.3668 0.8789 0.7697
GMDH (this study) 0.2297 0.3132 0.9122 0.8321
MARS (this study) 0.2729 0.3668 0.8789 0.7697
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developed models can predict the target values of the
shear strength of HSC slender beams without web
reinforcement with acceptable accuracy and less error
than the available design codes over a wide range of
input variables.

To have a deeper understanding of the errors in
design codes, the Discrepancy Ratio (DR) between
measured and predicted shear strengths as an error
indicator was plotted against the most e�ective pa-
rameters, including longitudinal steel ratio (�), f 0c, d,
and a=d, for testing the dataset in Figure 3. The
results of Eurocode-2 [33], CEP-FIP [34], and AS 3600-
2009 [35], which had higher acceptable accuracy, were
compared with those of GMDH and MARS models
in this aspect. The best linear regression also �ts
prediction values of the mentioned models. Errors of
an appropriate model should be independent of, or
less sensitive to, the variation of the input parameters
involved in that phenomenon. Otherwise, it can be
interpreted that those input parameters are neither
correctly incorporated or included in that model [42].
As shown in Figure 3, the errors of three design codes
are sensitive to changes of � as if their prediction varies
from overestimation status to underestimation status
as � increases. It can be interpreted that this parameter
is not correctly involved in their equations. On the

Figure 3. Variation of Discrepancy Ratio (DR) between
measured and predicted shear strengths as a function of �,
f 0c, d, and a=d.

other hand, the errors of GMDH and MARS models
are completely independent of this parameter.

According to this �gure, the errors of all models
are almost independent of parameters f 0c and d. Thus,
it can be expected that these parameters be probably
well de�ned in the mentioned models. It should be
noted that the errors of Eurocode-2 [33] in variation of
parameter d are more than those of other models. In
addition, sensitivity of the errors of GMDH and MARS
models to variations of d and f 0c is less than that of the
three design codes. Figure 3 demonstrates the errors
of the mentioned models as a function of parameter
a=d. Of note, the predictions of design codes vary from
underestimation status to overestimation status as a=d
increases, and this inclination in CEB-FIP [34] model
is less than the other two equations. As a result, these
�gures show that all input parameters are successfully
included into the newly proposed models, and their
errors are completely independent of these parameters.

5.2. Parametric and sensitivity analyses
To further examine the robustness of the developed
GMDH and MARS models, a parametric analysis can
be carried out. Parametric analysis investigates how
closely the model's predictions agree with available
structural knowledge and experimental data and with
one's expectation. Therefore, parametric analysis was
carried out with the aim of gaining a deeper under-
standing of concrete shear strength of HSC slender
beams without web reinforcement. The parametric
analysis investigates the response of the predicted
shear strength from the proposed models to a set of
hypothetical input data generated over the ranges of
the minimum and maximum data used for the model
training. The methodology was presented based on
the change of only one input variable varied at a time,
while the other variables were kept constant on their
average in the applied datasets. A set of synthetic data
for the single parameter was generated by increasing
it incrementally. These inputs were presented for
the prediction equation, and the shear strength was
calculated. This procedure was repeated using another
variable until the model's response was tested for all
input variables.

The results of the parametric analysis and, also,
the used experimental data are shown in Figure 4. It
can be seen that the prediction behavior of concrete
shear strength from GMDH and MARS models agrees
well with the experimental results. Figure 4(a) presents
the variations of concrete shear strength as a function
of e�ective depth (d). As shown, the failure shear
stress decreases with the increase of e�ective depth.
This behavior is well documented in the literature for
RC slender beams without web reinforcement. There
are two common approaches and hypotheses to explain
this behavior: one of these approaches highlights the
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Figure 4. Shear strength parametric analysis in GMDH- and MARS-based models for di�erent ranges of (a) d, (b) a=d,
(c) �, and (d) f 0c.

role of aggregate interlock, which is reduced in larger
members due to the development of wider cracks. The
other common approach is based on fracture mechanic
concepts, indicating that larger members release more
energy, resulting in wider cracks.

The variations of predicted shear strength by
GMDH and MARS models with a=d ratio are shown
in Figure 4(b). As expected, the shear strength of RC
beams decreases as a=d ratio increases. Furthermore,
the prediction of shear strength almost coincides with
the experimental test results obtained from literature,
according to this �gure. The ratio of a=d determines
the behavior of deep and slender beams and also their
failure modes. In deep beams, it can be expected that
marginal enhancement of resistance occurs by the beam
beyond the �rst diagonal crack due to arch action with
redistribution of stresses. On the other hand, failure
occurs after the �rst diagonal crack in slender beams.
It is indicated that there is possible meager reserve
strength beyond diagonal cracking. The similar e�ect
of a=d ratio on shear strength of RC beams is also
reported in the literature.

The e�ect of longitudinal steel ratio (�) on shear
strength is presented in Figure 4(c). It can be seen
that shear strength increases as the percentage of
longitudinal reinforcement increases. This contribu-
tion of longitudinal reinforcement in increasing shear
resistance can be attributed to dowel action and can
be about 30% in slender member, such as slabs. It
should be noted that, in HSC beams, it demands higher

percentage of longitudinal reinforcement to enhance
the dowel force than beams made of Normal Strength
Concrete (NSC).

Based on Figure 4(d), it can be seen that the
compressive strength of concrete increases the shear
strength when all other parameters are constant. The
shear strength in RC slender beams signi�cantly de-
pends on the diagonal cracking strength. The diagonal
cracking strength of a NSC beam without web rein-
forcement is often expressed as a function of square
root of compressive strength of concrete [30]. However,
the shear strength of RC beams made of HSC tends
to vary di�erently from the square root of compressive
strength of concrete. From these observations, it can
be concluded that the developed GMDH and MARS
models are in good agreement with the physical char-
acteristics of shear strength phenomenon and previous
�ndings.

The data used in parametric analysis were also
employed to explore and quantify the relative impor-
tance of model inputs to its output by measuring the
e�ects on the output when the inputs vary between
their minimum and maximum in the dataset used.
The quanti�cation of this process was determined using
the data obtained from holding all input variables at
their average values except one output that varied
between its ranges (xi 2 fx1; x2; � � � ; xng). The output
yi for n levels of particular input, xi, was used to
identify which variables have more in
uence using the
sensitivity measure, Sg, of the average gradient over all
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Figure 5. Sensitivity analysis of important parameters
based on GMDH and MARS models.

intervals as follows [43]:

Sg =
nX
i=1

jyi � yi+1j = (n� 1) : (26)

In fact, this approach investigates how output may
change if the variables in the trained MARS and
GMDH models are perturbed in their ranges. Figure 5

presents the calculated Sg values of GMDH and
MARS models for the e�ective depth, d, shear span-
to-depth ratio, a=d, the aggregate size-to-depth ratio,
ag=d, the compressive strength of concrete, f 0c, and the
longitudinal steel ratio, �. According to this �gure,
the e�ective depth provides greater importance and
is considered the most signi�cant factor a�ecting the
shear strength of HSC slender beams. On the other
hand, the results demonstrate that the aggregate size-
to-depth ratio holds the least importance. It can be
also observed from this �gure that the longitudinal steel
ratio is the second important parameter and is followed
by the compressive strength of concrete and the shear
span-to-depth ratio.

5.3. Safety analysis
A reliable prediction of concrete shear capacity is
vital for engineers to have a safe, technically correct

and cost-e�ective design. According to the previous
sections, it can be expected that the uncertainty of the
design codes is greater than that of the proposed ones
due to their low accuracy. However, it is impossible
to know the uncertainty or safety factor incorporated
in them. To evaluate the reliability and uncertainty of
the existing models, box plot of DR values of di�erent
approaches can be used. To generate each box, the
DR values for entire database are sorted from the
largest to smallest values; then, their median values
specify the central mark of the box. The edges of
the box represent the 25th and 75th percentiles. The
generated box plot can be used as a tool to graphically
demonstrate the uncertainty in di�erent models. The
spacing between di�erent parts of the box indicates the
degree of dispersion (spread) or skewness.

Furthermore, Collins [44] presented a new scale
to evaluate and classify the reliability of design codes.
This scale is known as Demerit Points Classi�cation
(DPC), which considers the safety, accuracy, and
scattering of design codes as a function of the ratio
between the ultimate resistance in experimental tests
and the theoretically estimated shear capacity. In the
present study, this ratio is represented by parameter
DR. Table 6 presents an adaption in the present
study derived from the original values proposed by
Collins.

Figure 6 presents the box plots and DR values of
di�erent approaches. Furthermore, �ve classi�ed areas
based on Collins criteria, including extremely danger-
ous, dangerous, appropriate and safe, conservative, and
extremely conservative, are speci�ed in Figure 6. As
shown, ACI 318-11 [30], CSA A23.3-04 [31], and �b
model [32] equations are remarkably conservative and
have the highest uncertainty (longer box) as if their pre-
dictions vary from extremely conservative to dangerous
areas and even extremely dangerous area for ACI 318-
11 [30]. The other design codes are also conservative
and their uncertainties are remarkable; however, their
amounts are low and more reasonable than the three
mentioned design codes. However, Figure 6 shows that
box plots of the proposed MARS and GMDH models
are narrower than those of others are, which is an
indicator of a higher con�dence level. In addition,
the proposed methods show good predictive capability
in terms of accuracy with median values close to 1,

Table 6. Classi�cation by demerit points.

vu;exp=vu;predicted Classi�cation Demerit points

< 0:50 Extremely dangerous 10
[0:50� 0:85) Dangerous 5
[0:85� 1:15) Appropriate and safe 0
[1:15� 2:00) Conservative 1
� 2:00 Extremely conservative 2
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Figure 6. Box plot of di�erent equations.

unlike the design codes. It should be noted that the
MARS model outperforms the GMDH model in this
aspect.

In order to evaluate quantitatively the safety of
the proposed models and existing design codes, �rst,
a demerit point is attributed to each prediction of
these equations for total 250 data points based on
Table 6. Then, the total values of demerit of each
formula are calculated by the sum of the products of
the number of specimens at each interval and their
corresponding demerit penalty. The lower value of
the total sum indicates that the considered formula
is safer. Table 7 presents the evaluation of GMDH,
MARS and also design equations as a function of the
adapted criteria from Ramirez et al. [3]. According to
this table, the equations of Eurocode-2 [33], ACI 318-
11 [30], and CSA A23.3-04 [31] with respective 427,
413, and 315 total demerit points, as expected, have
the weakest performance among design codes. The
CEP-FIP [34] model presents the lowest total demerit
points amongst the other design equations. However,
60% of its prediction values are either in the fourth
classi�cation range (between 1.15 and 2) or the �fth
classi�cation range (greater than 2), which is classi�ed
as conservative and extremely conservative in terms
of safety and leads to an unpro�table design. The
total demerit point of the proposed GMDH model
is nearly equal to CEP-FIP equation. Unlike the
CEP-FIP, 68.4% of GMDH predictions are classi�ed
in the third region, which is appropriate and safe.
In general, the developed MARS model outperformed
other design codes in terms of safety by improving the
total demerit point by 69.6% with respect to CEP-
FIP equation as the safest design code and GMDH
model.

6. Concluding remarks

The robustness of Group Method of Data Han-
dling (GMDH) and Multivariate Adaptive Regression
Splines (MARS) as alternative approaches was investi-
gated and assessed in prediction of the shear strength
of slender HSC reinforced concrete beams. An available
database, including 250 experimental tests of shear
strength, was employed to develop the MARS and
GMDH models. The proposed models related the shear
strength to longitudinal steel ratio, the shear span-to-
depth ratio, compressive strength of concrete, the size
of the beam specimens, and the size of coarse aggregate.
The predictive abilities of GMDH and MARS models
were examined by comparing their predictions with
those obtained from the most common formulae and
MNLR regression approach. The most important
outcomes of this study can be summarized as follows:

� Among the existing equations in the literature,
there was good agreement between measured and
predicted maximum shear strengths using AS 3600-
2009 equation. However, a notable number of its
predictions were categorized in unsafe region based
on Collins criteria. In contrast, the CEB-FIP model
represented the safest predictions according to this
criterion while its accuracy was remarkably limited;

� The newly proposed GMDH and MARS models
outperformed the existing design equations in terms
of both accuracy and safety. The errors of the
developed GMDH and MARS models also showed a
symmetrical and predictable behavior. The MARS
model also outperformed GMDH and MNLR models
in both accuracy and safety aspects;

� The results of statistical measures showed that
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Table 7. Classi�cation of di�erent equations according to the criteria of Collins.

Model DR < 0:5 0:5 � DR < 0:85 0:85 � DR < 1:15 1:15 � DR < 2 DR > 2 Demerit
points

MARS | 23 207 20 | 135
| 23� 5 207� 0 20� 1 |

GMDH | 37 171 42 1 227
| 37� 5 171� 0 42� 1 1� 2

ACI 318-11 6 38 64 121 21 413
6� 10 38� 5 64� 0 121� 1 21� 2

CSA A23.3-04 | 12 40 141 57 315
| 12� 5 40� 0 141� 1 57� 2

Fib model code | 14 45 138 53 314
| 14� 5 45� 0 138� 1 53� 2

Eurocode-2 2 63 99 80 6 427
2� 10 63� 5 99� 0 80� 1 6� 2

CEB-FIP model | 15 87 142 6 229
| 15� 5 87� 0 142� 1 6� 2

AS 3600-2009 1 40 108 101 | 311
1� 10 40� 5 108� 0 101� 1 |

JSCE | 14 65 154 17 258
| 14� 5 65� 0 154� 1 17� 2

Cladera and Mari [37] | 16 76 149 9 247
| 16� 5 76� 0 149� 1 9� 2

the proposed MARS model outperformed the other
design equations in the literature. The proposed
models yielded R2 = 0:94 and RMSE = 0:18 kN,
and this represented a 65.5% improvement in RMSE
and a 88% improvement in terms of R2 with respect
to AS 3600-2009 equation as the best equation
among the other design equations;

� The sensitivity analysis based on GMDH and MARS
models indicated that shear capacity was mostly
a�ected by e�ective depth, whereas the aggregate
size-to-depth ratio were of the least importance.
The longitudinal steel ratio was the second impor-
tant parameter and was followed by the compressive
strength of concrete and the shear span-to-depth
ratio;

� The robustness of GMDH and MARS models in
capturing the underlying physical behaviors of shear
strength was veri�ed through parametric study.
Results of parametric analysis were also con�rmed
by the outcomes of sensitivity analysis.

In general, the results indicated that GMDH and
MARS algorithms could be successfully used as reliable
alternative approaches to predict shear strength of HSC
slender beams without web reinforcement.
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