Identifying the time of step change and drift in Phase II monitoring of autocorrelated logistic regression profiles

Document Type : Article

Authors

1 Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, P.O. Box 18151-159, Iran

2 Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, G.C., P.O. Box 19839-69411, Tehran, Iran

Abstract

In some profile monitoring applications, the independency assumption of consecutive binary response values within each profile is violated. To the best of our knowledge, estimating the time of a change in the parameters of an autocorrelated binary profile is neglected in the literature. In this paper, two maximum likelihood estimators are proposed to estimate the real time of step changes and drift in Phase II monitoring of binary profiles in the case of within-profile autocorrelation, respectively. Our proposed estimators, not only identify the change point in the autocorrelated logistic regression parameters, but also in autocorrelation coefficient. The performance of the proposed estimators to identify the time of change points either in regression parameters or autocorrelation coefficient is evaluated through simulation studies. The results in terms of the accuracy and precision criteria show the satisfactory performance of the proposed estimators under both step changes and drift. Moreover, a numerical example is given to illustrate the application of the proposed estimators. 

Keywords

Main Subjects


References
1. Yeh, A.B., Huwang, L., and Li, Y.M. Pro le monitoring
for a binary response", IIE Transactions, 41(11),
pp. 931-941 (2009).
2. Amiri, A., Koosha, M., and Azhdari, A. Pro le
monitoring for Poisson responses", Proceedings of the
Industrial Engineering and Engineering Management
Conference (IEEM), pp. 1481-1484 (2011).
3. Amiri, A., Koosha, M., and Azhdari, A. T2 Based
methods for monitoring gamma pro les", Proceedings
of the International Conference on Industrial
Engineering and Operations Management, Istanbul,
Turkey, pp. 3-6 (2012).
4. Paynabar, K., Jin, J.J., and Yeh, A.B. Phase I
risk-adjusted control charts for monitoring surgical
performance by considering categorical covariates",
Journal of Quality Technology, 44(1), pp. 39-53 (2012).
5. Noorossana, R. and Izadbakhsh, H. Pro le monitoring
for multinomial responses", International Journal
of Industrial Engineering & Production Management,
23(4), pp. 417-429 (2013).
6. Amiri, A., Koosha, M., Azhdari, A., and Wang, G.
Phase I monitoring of generalized linear model-based
regression pro les", Journal of Statistical Computation
and Simulation, 85(14), pp. 2839-2859 (2015).
7. Shadman, A., Mahlooji, H., Yeh, A.B., and Zou, C. A
change point method for monitoring generalized linear
pro les in phase I", Quality and Reliability Engineering
International, 31(8), pp. 1367-1381 (2015).
8. Izadbakhsh, H., Noorossana, R., Zarinbal, M., Zarinbal,
A., Safaian, M., and Chegeni, M. An EWMAbased
method for monitoring polytomous logistic
pro les", Proceedings of the Industrial Engineering
and Engineering Management (IEEM), pp. 1359-1363
(2011).
9. Shang, Y., Tsung, F., and Zou, C. Pro le monitoring
with binary data and random predictors", Journal of
Quality Technology, 43(3), pp. 196-208 (2011).
10. Saghaei, A., Rezazadeh-Saghaei, M., Noorossana, R.,
and Dorri, M. Phase II logistic pro le monitoring",
International Journal of Industrial Engineering & Production
Research, 23(4), pp. 291-299 (2012).
11. Noorossana, R., Aminnayeri, M., and Izadbakhsh, H.
Statistical monitoring of polytomous logistic pro les
in phase II", Scientia Iranica, 20(3), pp. 958-966
(2013).
12. Soleymanian, M.E., Khedmati, M., and Mahlooji, H.
Phase II monitoring of binary response pro les",
Scientia Iranica, 20(6), pp. 2238-2246 (2013).
13. Noorossana, R., Saghaei, A., Izadbakhsh, H., and
Aghababaei, O. Monitoring multinomial logit pro les
via log-linear models", International Journal of Industrial
Engineering, 24(2), pp. 137-142 (2013).
14. Noorossana, R., Niaki, S.T.A., and Izadbakhsh, H.
Statistical monitoring of nominal logistic pro les in
Phase II", Communications in Statistics-Theory and
Methods, 44(13), pp. 2689-2704 (2015).
15. Shadman, A., Zou, C., Mahlooji, H., and Yeh, A.B.
A change point method for Phase II monitoring
of generalized linear pro les", Communications in
Statistics-Simulation and Computation, 46(1), pp.
559-578 (2017).
16. Panza, C.A. and Vargas, J.A. Monitoring the shape
parameter of a weibull regression model in Phase II
processes", Quality and Reliability Engineering International,
32(1), pp. 195-207 (2014).
17. Imani, M.H. and Amiri, A. Phase II monitoring
of logistic regression pro le in two-stage processes",
Proceedings of the 11th International Industrial Engineering
Conference, Tehran, Iran, (2015).
18. Qi, D., Wang, Z., Zi, X., and Li, Z. Phase II
monitoring of generalized linear pro les using weighted
likelihood ratio charts", Computers & Industrial
Engineering, 94, pp. 178-187 (2016).
19. Shara , A., Aminnayeri, M., and Amiri, A. Identifying
the time of step change in binary pro les",
The International Journal of Advanced Manufacturing
Technology, 63(1-4), pp. 209-214 (2012).
20. Shara , A., Aminnayeri, M., Amiri, A. and Rasouli, M.
Estimating the change point of binary pro les with
a linear trend disturbance", International Journal of
Industrial Engineering & Production Research, 24(2),
pp. 123-129 (2013).
21. Shara , A., Aminnayeri, M., and Amiri, A. An MLE
approach for estimating the time of step changes in
Poisson regression pro les", Scientia Iranica, 20(3),
pp. 855-860 (2013).
22. Zand, A., Yazdanshenas, N., and Amiri, A. Change
point estimation in phase I monitoring of logistic
regression pro le", The International Journal of Advanced
Manufacturing Technology, 67(9-12), pp. 2301-
2311 (2013).
23. Sogandi, F. and Amiri, A. Estimating the time of
a step change in gamma regression pro les using
MLE approach", International Journal of Engineering-
Transactions B: Applications, 28(2), pp. 224-231
(2014).
24. Sogandi, F. and Amiri, A. Change point estimation
of gamma regression pro les with a linear trend disturbance",
International Journal of Quality Engineering
and Technology, 4(4), pp. 352-368 (2014).
25. Sogandi, F. and Amiri, A. Monotonic change point
estimation of generalized linear model-based regression
pro les", Communications in Statistics-Simulation
and Computation, 46(3), pp. 2207-2227 (2017).
26. Shang, Y., Man, J., He, Z., and Ren, H. Change-point
detection in Phase I for pro les with binary data and
random predictors", Quality and Reliability Engineering
International, 32(7), pp. 2549-2558 (2016).
27. Koosha, M. and Amiri, A. Generalized linear mixed
model for monitoring autocorrelated logistic regression
pro les", The International Journal of Advanced Manufacturing
Technology, 64(1-4), pp. 487-495 (2013).
3666 M.R. Maleki et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 3654{3666
28. Maleki, M.R., Amiri, A., and Taheriyoun, A.R.
Phase II monitoring of binary pro les in the presence
of within-pro le autocorrelation based on Markov
model", Communications in Statistics-Simulation and
Computation, 46(10), pp. 7710-7732 (2017).
29. Anderson, T.W., An Introduction to Multivariate Statistical
analysis, Third Edition, John Wiley & Sons,
Inc (2003).