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Abstract. In some pro�le monitoring applications, the independency assumption of
consecutive binary response values within each pro�le is violated. To the best of our
knowledge, estimating the time of a change in the parameters of an autocorrelated binary
pro�le is neglected in the literature. In this paper, two maximum likelihood estimators
are proposed to estimate the real time of step changes and drift in Phase II monitoring
of binary pro�les in the case of within-pro�le autocorrelation. Our proposed estimators
identify the change point not only in the autocorrelated logistic regression parameters, but
also in autocorrelation coe�cient. The performance of the proposed estimators to identify
the time of change points either in regression parameters or autocorrelation coe�cient is
evaluated through simulation studies. The results, in terms of the accuracy and precision
criteria, show the satisfactory performance of the proposed estimators under both step
changes and drift. Moreover, a numerical example is given to illustrate the application of
the proposed estimators.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In some manufacturing or nonmanufacturing systems,
the relationship between a response variable and one
or several explanatory variables, referred to as pro�le,
should be monitored during the time. Concerning the
type of this relationship, the pro�les are categorized
into di�erent classes, such as simple linear, multiple lin-
ear, polynomial, nonlinear, Generalized Linear Models
(GLM)-based pro�les, etc.

Most pro�le monitoring approaches in the litera-
ture have been provided under normality assumption
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of the response variable. However, in many statistical
monitoring applications, the normality assumption of
the response variables is violated. In such situations,
the generalized linear models are usually used to cover
this kind of pro�les when the response variable belongs
to the family of exponential distributions such as
binary, binomial, Poisson, and gamma. In the �rst
research concerning the monitoring of GLM pro�les,
Yeh et al. [1] extended �ve Hotelling's T 2 charts,
namely, T 2

H ; T 2
R; T 2

I ; T 2
E , and T 2

D, for Phase I monitoring
of binary pro�les. Through simulation studies, they
compared the performances of their proposed charts
to detect out-of-control disturbances in terms of the
signal probability criterion and found that T 2

I chart
outperformed the others. After that, some e�orts have
been put into monitoring GLM pro�les in Phases I and
II. Phase I monitoring of GLM pro�les is documented
as follows.

Amiri et al. [2] evaluated two of the best control
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charts of Yeh et al. [1] including T 2
I and T 2

R methods
for Phase I monitoring of Poisson regression pro�les
considering step shifts and drifts. Amiri et al. [3]
extended Hotelling's �ve T 2 charts for monitoring
gamma response pro�les in Phase I. They implemented
simulation studies and evaluated the performance of
their proposed methods under di�erent magnitudes of
step shift and drift in terms of the signal probability
criterion. Paynabar et al. [4] proposed a general risk-
adjusted control chart for monitoring binary surgical
responses based on the Likelihood Ratio Test (LRT).
Noorossana and Izadbakhsh [5] utilized multinomial
logistic regression and extended some methods in order
to monitor pro�les in the case of multinomial response
variable. Amiri et al. [6] extended three methods,
namely, Hotelling's T 2, LRT, and F charts, to mon-
itor GLM regression pro�les concerning the Poisson
response variables in Phase I. A change point detection
problem was studied by Shadman et al. [7] to monitor
the generalized linear pro�les for a large class of
response variables with continuous and nominal scales
in Phase I. They compared their proposed approach
with the existing charts in especial case of binomial and
Poisson pro�les. Phase II monitoring of GLM pro�les
in the literature is also addressed as follows.

Izadbakhsh et al. [8] proposed three methods
based on the Ordinal Logistic Regression (OLR) to
monitor the pro�les with ordinal response variable
in Phase II. They assessed the performance of the
proposed control charts in terms of Average Run
Length (ARL) criterion. Shang et al. [9] proposed
a scheme to monitor the logistic regression pro�les
in the case of random explanatory variables. Their
proposed method could also detect the mean shifts
in the explanatory variables along with the regression
parameters. Saghaei et al. [10] proposed two methods
including EWMA2 and Hotelling's T 2 control charts
for Phase II monitoring of logistic pro�les under bi-
nary responses. Four methods, namely, Multivariate
Exponentially Weighted Moving Average (MEWMA),
�2, Exponentially Weighted Moving Average (EWMA)
with R statistic, and a combination of the last two
statistics, were proposed by Noorossana et al. [11]
to monitor OLR pro�les in Phase II. Soleymanian
et al. [12] proposed four control charts including
Hotelling's T 2, MEWMA, LRT, and LRT/EWMA
to monitor pro�les with binary response variable in
Phase II. Noorossana et al. [13] studied monitoring of
pro�les with multinomial response variables based on
multinomial logistic regression. They converted the
multinomial logistic regression to the Poisson GLM
using log link and proposed two methods including
MEWMA and LRT statistics to monitor multinomial
logistic regression pro�les in Phase II. Using three
approaches including LRT, MEWMA, and Support
Vector Machine (SVM), the Phase II monitoring of

logistic regression pro�les was studied by Noorossana
et al. [14]. Shadman et al. [15] introduced a uni�ed
framework based on Rao score test to monitor GLM
pro�les in Phase II. Some di�erent control charts to
monitor the shape parameter of a Weibull regression
model have been studied by Panza and Vargas [16] in
Phase II. Imani and Amiri [17] extended two methods,
namely, T 2 based chart and Skinner's residual based
chart, to monitor the logistic regression pro�les in a
two-stage process. A uni�ed framework was proposed
by Qi et al. [18] based on the weighted likelihood
ratio test for Phase II monitoring of generalized linear
pro�les either for the �xed explanatory variables or for
the random ones.

Once a monitoring statistic falls outside the con-
trol limit intervals, a signal will be received from the
control chart. However, identifying the real time when
the process �rst goes to an out-of-control situation
helps the quality practitioners to eliminate the sources
of the signals more e�ectively. Recently, several
researches have been done to estimate the real time of
change, referred to as the \change point," in linear pro-
�les. However, the literature on estimating the change
point of GLM pro�les is not large enough. Shara� et
al. [19] presented the Maximum Likelihood Estimator
(MLE) to estimate the real time of a step change in
Phase II monitoring of binary pro�les. Afterwards,
Shara� et al. [20] used MLE approach to estimate
the change point in binary pro�les when the type of
change was drift. The ML estimator was developed by
Shara� et al. [21] to identify the change point in Phase
II monitoring of Poisson regression pro�les. Zand
et al. [22] extended two methods, namely, LRT and
clustering, to estimate the real time of a step change
in Phase I monitoring of binary pro�les. Sogandi and
Amiri [23] estimated the real time of a step change in
Phase II monitoring of gamma regression pro�le using
MLE approach. The change point estimation of gamma
regression pro�les with a linear trend disturbance based
on the extension of MLE approach was studied by
Sogandi and Amiri [24]. Sogandi and Amiri [25] used a
general MLE approach to estimate the change point of
GLM pro�les under the monotonic change in Phase II.
Shang et al. [26] explored the change-point estimation
of binary pro�les in Phase II based on LRT method by
considering random explanatory variables.

In all of the above-mentioned researches, either
on monitoring or on change point estimation of GLM
pro�les, the response variables within each pro�le
have been assumed independent. This assumption is
satis�ed under very restricted laboratory conditions
and there is no guarantee that it holds in practice. For
instance, consider the manufacturing process of elec-
trolytic capacitors in which the �nal quality of the units
is expressed as \pass" or \fail" and the successive obser-
vations are taken in short intervals. In this process, the
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explanatory variables are the type of raw material, level
of voltage, frequency, and temperature. Obviously,
the binary response observations are autocorrelated
due to the short time of measuring the sampled
observations within each pro�le. The binary nature
of the response variable induces the use of logistic
regression. However, this model strongly depends on
the independency assumption of experimental units in
di�erent levels of explanatory variables. Consequently,
since both normality and independency assumptions
are simultaneously violated, the common approaches
available in the literature cannot be used for monitoring
such autocorrelated GLM pro�les. Although it is very
likely to face situations with the lack of normality and
independency, simultaneously, very little attention has
been devoted to monitor autocorrelated GLM pro�les.
We can mention Koosha and Amiri [27], who inves-
tigated the e�ect of within-pro�le autocorrelation on
monitoring logistic regression pro�les in Phase I. They
suggested two remedial approaches to account for the
e�ect of autocorrelation in terms of signal probability
criterion. Maleki et al. [28] studied Phase II monitoring
of autocorrelated binary pro�les using a Markov-based
model. For this purpose, they introduced a logistic
regression model, which took into account the within-
pro�le autocorrelation. They evaluated the perfor-
mance of their proposed method in detecting di�erent
step shifts in the vector of regression model parameters
in terms of ARL criterion. It is worth mentioning
that, to monitor autocorrelated binary pro�les, it is
important to identify the time when the process starts
to change to an out-of-control situation after receiving
an out-of-control signal. However, to the best of the
authors' knowledge, estimating the real time of change
in autocorrelated GLM pro�les has obviously been
neglected in the literature. The mentioned research gap
as well as the wide application of the autocorrelated
GLM pro�les in industrial or service environments
is a very good motivation to analyze such pro�les.
Hence, in this paper, we propose two MLE methods
to estimate the real time of change point under step
changes and drift, respectively, in Phase II monitor-
ing of autocorrelated logistic regression pro�les. We
assume that the response values within each pro�le
are autocorrelated and follow �rst order autoregressive
(AR(1)) model. Note that in Maleki et al. [28], only
step shifts are taken into account. However, in this
paper, not only the step changes but also the linear
trends in the vector of model parameter are studied.

The rest of this paper is organized as follows: In
the following section, the preliminaries and the model
assumptions are described. Two estimators to identify
the time of changes in binary pro�les considering the
within-pro�le autocorrelation in Phase II are presented
in Section 3. The �rst method estimates the time of
change under step changes while the second estimator

determines the change point under linear trend in
model parameters. Section 4 contains simulation
studies to evaluate the performance of the proposed
estimators in terms of accuracy and precision criteria.
An illustrative example is provided in Section 5 to
show the application of our proposed estimators. The
concluding remarks and a recommendation for future
study are discussed in Section 6.

2. Preliminaries and assumptions

As noted previously, Maleki et al. [28] employed a
uni�ed methodology for Phase II monitoring of auto-
correlated binary pro�les concerning the within-pro�le
autocorrelation. Assume that yi denotes the binary
response value at ith; i = 1; :::; n treatment of a
sampled pro�le. If the response values are autocor-
related within each pro�le, then yi is a�ected by both
xi = (xi1; xi2; :::; xip), the p-dimensional explanatory
variables, and the observed responses values in the
previous experimental settings, i.e., (yi�1; yi�2; :::; y1).
Using the logistic regression model to express the rela-
tionship between binary response variable and explana-
tory variable(s) leads to misleading results, because
this model ignores the within-pro�le autocorrelation
structure. Considering the �rst order autoregressive
model, i.e., AR(1), between consecutive response values
in each pro�le, Maleki et al. [28] proposed a stationary
state space f0; 1g model for ith treatment as follows:

pyi�1 = P (yi = 1jyi�1 = j)

=

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

P (yi = 1jyi�1 = 0) = P0

=
1

1 + eXi��
eXi� � �e 1

2 (Xi+Xi�1)�
�

if yi�1 =0;

P (yi = 1jyi�1 =1)=P1

=
1

1 + eXi��
eXi�+�e

1
2 (Xi�Xi�1)�

�
if yi�1 =1;

(1)

where � = Corr(yi; yi�1), and � = (�1; �2; :::; �p)0 is
the vector of regression coe�cients. In the second
step, they presented the likelihood function by taking
into account the within-pro�le autocorrelation. Maleki
et al. [28] noted that the common approaches in the
area of monitoring GLM pro�les were proposed under
the independency assumption of consecutive response
values within each pro�le. Hence, they developed
an evolutionary algorithm to estimate the regression
parameters by maximizing the likelihood function.
Afterwards, they computed the Fisher information
matrix of the induced likelihood function under Eq. (1)
to estimate the asymptotic covariance matrix of the
estimated parameters, ��̂. Then, they proposed two
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control charts, namely, the extended Hotelling's T 2

and MEWMA, to monitor the model parameters under
di�erent step shifts.

3. Proposed change point estimators

In this section, the proposed estimators to identify the
real time of a change in a binary pro�le when the
observations within each pro�le are autocorrelated and
follow AR(1) model are suggested. In Subsection 3.1,
the type of disturbance is assumed to be a step change
while in Subsection 3.2, the change type is considered
as a drift. Note that, �rst, the Hotelling's T 2 chart
proposed by Maleki et al. [28] for Phase II monitoring
of autocorrelated binary pro�les is used to detect any
faults in the vector of regression parameters. It is
worth mentioning that, for jth pro�le, the T 2

j statistic
considering the within-pro�le autocorrelation structure
is de�ned as:

T 2
j =

�
�̂j�E(�̂)

�0
��1
�̂

�
�̂j�E(�̂)

�
; j=1; :::; T; (2)

where �̂j =
�
�̂j ; �̂1;j ; �̂2;j ; :::; �̂p;j

�0
is a vector of

estimated parameters for jth pro�le and E(�̂) =
(�; �1; �2; :::; �p)

0 denotes the vector of expected values
for the estimated parameters in the extended logistic
regression model. Also, ��̂ denotes the covariance
matrix of the estimated model parameters. For detailed
information, refer to Maleki et al. [28].

3.1. Proposed estimator under step change
It is assumed that the model parameters of the au-
tocorrelated binary pro�le are statistically in-control
at the beginning of the underlying process with the
known vector of �0 = (�; �1; :::; �p)

0. After an unknown
step change point at �scth pro�le, the vector of model
parameters goes to an out-of-control state denoted by
�1, where �1 6= �0. The underlying process continues
until period T when the Hotelling's T 2 control chart
triggers an out-of-control signal. In other words, we
have T 2

j � UCL for j < T , and T 2
j > UCL for

j = T , where UCL denotes the upper control limit
of Hotelling's T 2 chart. Note that the value of UCL
is set such that a desired in-control average run length
(ARL0) value is achieved. The ML estimates, �̂, are
asymptotically distributed with multivariate normal
distribution with the mean vector of �0 and covariance
matrix of ��̂, which is derived based on the inverse of
Fisher information matrix. During the formulation of
subgroups, when j = 1; 2; :::; �sc; the vector of model
parameters �j is equal to its known in-control value
�0. For these subgroups, we have:

�̂1; :::; �̂�sc
iid�MVN(�0;��̂): (3)

As noted, for j = �sc + 1; :::; T; the vector of regression
parameters is equal to some unknown vector of �1,

where �1 6= �0. In this case, the observations for
the out-of-control process follow multivariate normal
distribution as:

�̂�sc+1; :::; �̂T
iid�MVN(�1;��̂): (4)

In Eqs. (3) and (4), �0;�1 2 Rp+1, ��̂ belongs to
the family of all symmetric positive de�nite (p + 1) �
(p + 1) matrices, and �sc 2 f1; 2; :::; T � 1g. We
assume that the model parameters remain at the out-
of-control level until the step change is detected and
the corresponding assignable cause is eliminated. Two
unknown parameters in the regression model are �1
and �sc. Based on the aforementioned explanations,
the likelihood function by considering the within-
autocorrelation structure is:

L(�1; �scj�̂;��̂)

=
� �scY
j=1

(2�)�(p+1)=2j��̂j�1=2

exp
�
�1

2
(�̂j � �0)0��1

�̂
(�̂j � �0)

��
�
� TY
j=�sc+1

(2�)�(p+1)=2j��̂j�1=2

exp
�
�1

2
(�̂j � �1)0��1

�̂
(�̂j � �1)

��
: (5)

The MLE of �sc under step changes (denoted by �̂sc)
considering the within-autocorrelation structure is the
value that maximizes Eq. (5). Simplifying this equation
leads to the following result:

L(�1; �scj�̂;��̂) =
�

(2�)�T (p+1)=2
����T=2

�̂

�
�

exp
�
�1

2

�scX
j=1

(�̂j � �0)0��1
�̂

(�̂j � �0)
�

exp
�
�1

2

TX
j=�sc+1

(�̂j � �1)0��1
�̂

(�̂j � �1)
��
:

(6)

We are supposed to maximize Eq. (6) with respect to �1
and �sc within the mentioned parameter space. To this
end, note that since the parameter space concerning �sc
is countable, we have:

max
�sc

�
max
�1

L(�1j�sc; �̂;��̂)
�
: (7)

In other words, maximizing Eq. (6) is equivalent to
maximizing Eq. (7) for all possible change point values.
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Hence:

�̂sc = arg
0<�sc�T�1

max
�

max
�1

L(�1j�sc; �̂;��̂)
�

= arg
0<�sc�T�1

max
�
L(~�1j�sc; �̂;��̂)

�
; (8)

where ([29], p. 67):

~�1; �sc =
1

T � �sc
TX

j=�sc+1

�̂j : (9)

3.2. Proposed estimator under linear trend
Similar to Subsection 3.1, at the beginning of the
process, the underlying pro�le is statistically in-control
(for subgroups j = 1; :::; �lt) with known regression
parameters of �0 = (�; �1; :::; �p)

0. After �ltth binary
pro�le, the vector of model parameters linearly changes
to an out-of-control vector of �j = �0 + b(j � �lt); j =
�lt + 1; �lt + 2; :::; T , where T is the index of pro�le
when the T 2 chart triggers a signal. Note that vector
b = (b�; b�1 ; :::; b�p)0 denotes the slope vector of linear
disturbance in �0. Two unknown parameters in the
regression model are vector b and �lt. The likelihood
function under drift disturbance in the parameters of
the underlying autocorrelated binary pro�le is:

L(b; �ltj�̂;��̂)

=
�ltY
j=1

(2�)�(p+1)=2j��̂j�1=2

exp
�
�1

2
(�̂j � �0)0��1

�̂
(�̂j � �0)

�
TY

j=�lt+1

(2�)�(p+1)=2j��̂j�1=2

exp
�
� 1

2
[�̂j � (�0 + b(j � �lt))]

��1
�̂

h
�̂j � (�0 + b(j � �lt))

i �
: (10)

The MLE of �lt under linear trend (denoted by �̂lt)
in the regression parameters of the underlying binary
pro�le considering the within-pro�le autocorrelation is
obtained by maximizing Eq. (10). This equation can
also be simpli�ed as:

L(b; �ltj�̂;��̂) =
�

(2�)�T (p+1)=2
����T=2

�̂

�
�

exp
�
�1

2

�ltX
j=1

(�̂j � �0)0��1
�̂

(�̂j � �0)
�

exp
�
� 1

2

TX
j=�lt+1

[�̂j � (�0 + b(j � �lt))]0

��1
�̂

[�̂j � (�0 + b(j � �lt))]
��
: (11)

To obtain �̂lt, an expression for vector b in
terms of �lt (denoted by b̂� ) should be estimated.
Since obtaining this expression is not a trivial task,
a new approach based on Least Squares (LS) method
is proposed to obtain b̂� . Obviously, for subgroups
j = �lt + 1; :::; T :

�̂j =�j + "j = �0 + b(j � �lt) + "j ;

j = �lt + 1; :::; T: (12)

It can be statistically checked that "j 0s; j = �lt +
1; :::; T are independent and identically distributed as:

"j �MVN(0;��̂): (13)

Here, for �xed value of �lt, a regression at �̂j ��0
on (j � �lt) is considered. The LS estimate of slope
parameter is an ML estimate of b and obtained as
follows:

b̂� = (V0V)�1V0U; (14)

where U =
�
�̂�lt+1 � �0; �̂�lt+2 � �0; :::; �̂T � �0

�0
and

V = (1; 2; :::; T � �lt)0 are (T � �lt) � (p + 1) and
(T � �lt) � 1 matrices. After obtaining the vector of
b̂� , we substitute it in Eq. (12) and determine the
value of likelihood function for all possible values of
the parameter �lt. Hence, the estimated change point
concerning the linear trend in the model parameters is
obtained as follows:

�̂lt = arg
0<�lt�T�1

max
�

max
b

L(bj�lt; �̂;��̂)
�
; (15)

where vector b is estimated according to Eq. (14).

4. Performance evaluation

In this section, the performance of the proposed estima-
tors in identifying the time of changes in the regression
parameters of the autocorrelated binary pro�les in
Phase II is evaluated through two numerical examples.
In Example 1, the shift type is considered as a step
change while in Example 2, the process parameters
change by a linear trend.

4.1. Example 1
To evaluate the performance of the proposed estimator
to identify the time of step change in parameters of
Eq. (1), we assume that � = 0:15 and p = 2. The



M.R. Maleki et al./Scientia Iranica, Transactions E: Industrial Engineering 25 (2018) 3654{3666 3659

Table 1. Characteristics of estimates under step changes from �1 to �1 + k1��̂1
with di�erent values of k1.

Criterion Shift (k1)
0.25 0.5 0.75 1 1.5 2

E(j�̂ � � j) 61.32 15.52 3.47 1.26 0.86 0.77
Std(j�̂ � � j) 54.81 19.27 4.63 1.56 0.99 0.73
P (j�̂ � � j = 0) 2.1% 10.2% 21.2% 31.0% 35.8% 36.1%
P (j�̂ � � j � 1) 4.7% 21.6% 52.9% 74.4% 87.6% 90.4%
P (j�̂ � � j � 2) 7.3% 29.6% 63.1% 88.1% 94.5% 97.1%
P (j�̂ � � j � 3) 9.5% 31.7% 68.8% 92.9% 97.8% 99.6%
P (j�̂ � � j � 4) 10.1% 36.4% 74.5% 96.0% 99.1% 99.7%
P (j�̂ � � j � 5) 12.6% 40.0% 80.9% 97.7% 99.8% 100%

Table 2. Characteristics of estimates under step changes from �2 to �2 + k2��̂2
with di�erent values of k2.

Criterion Shift (k2)
0.25 0.5 0.75 1 1.5 2

E(j�̂ � � j) 44.27 9.77 2.63 1.09 0.83 0.74
Std(j�̂ � � j) 40.37 13.30 3.32 1.27 0.92 0.75
P (j�̂ � � j = 0) 2.8% 14.3% 22.1% 31.4% 36.1% 38.3%
P (j�̂ � � j � 1) 6.5% 30.5% 54.2% 80.4% 88.8% 90.7%
P (j�̂ � � j � 2) 8.5% 39.4% 68.4% 90.3% 95.9% 96.6%
P (j�̂ � � j � 3) 9.1% 46.0% 76.0% 95.0% 98.6% 99.5%
P (j�̂ � � j � 4) 10.8% 51.2% 80.9% 97.3% 99.2% 99.8%
P (j�̂ � � j � 5) 13.6% 55.1% 84.9% 99.4% 99.7% 100%

Table 3. Characteristics of estimates under step changes in � with di�erent values of k3.

Criterion
Shift

0.25 0.5 0.75 1 1.5

E(j�̂ � � j) 39.43 24.29 17.10 10.40 4.77

Std(j�̂ � � j) 38.22 26.87 18.25 11.02 5.84

P (j�̂ � � j = 0) 3.5% 3.8% 5.3% 8.6% 14.4%

P (j�̂ � � j � 1) 7.6% 11.9% 13.8% 19.8% 38.8%

P (j�̂ � � j � 2) 9.2% 15.4% 18.9% 26.9% 48.9%

P (j�̂ � � j � 3) 12.0% 20.2% 24.2% 31.6% 57.3%

P (j�̂ � � j � 4) 13.7% 24.1% 27.2% 38.0% 62.2%

P (j�̂ � � j � 5) 14.6% 26.6% 30.3% 42.7% 70.1%

intercept and slope parameters are considered as �1 =
3 and �2 = 2, respectively. Hence, the in-control
vector containing the autocorrelated logistic regression
parameters is �0 = (�; �1; �2)0 = (0:15; 3; 2)0. In our
simulation experiments, the step changes are simulated
to occur at �sc = 50. Thus, for pro�les j = 1; :::; 50, the
random samples are generated with vector parameters
of �0 = (0:15; 3; 2)0. For the �rst 50 in-control random
autocorrelated binary pro�les, it is assumed that no
false alarm is received by the extended Hotelling's
T 2 control chart. To deal with this issue and avoid
any false alarm, if the value of chart statistic exceeds

the UCL, we replace it by another in-control random
sample. After sample �sc = 50, the subgroups come
from a process with vector parameters of �1 = (� +
k1��̂; �1 + k2��̂1

; �2 + k3��̂2
)0; (k1; k2; k3)0 6= (0; 0; 0)0,

until the control chart triggers an out-of-control signal.
Then, the step change point �̂sc is estimated under
each out-of-control scenario. For each step change, this
procedure is repeated N = 1000 times and for each
replicate, three criteria based on the di�erence between
the actual and estimated change points, i.e., j�̂sc � �scj
are computed. The �rst row of Tables 1-6 represents
the magnitude of step change in model parameters in
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Table 4. Characteristics of estimates under step changes from �1 to �1 + b�1(j � �lt) with di�erent values of b�1 .

Criterion
Slope (b�1)

0.05 0.075 0.1 0.125 0.15 0.2

E(j�̂ � � j) 13.49 10.13 8.20 6.64 5.95 4.65

Std(j�̂ � � j) 7.03 4.87 3.91 3.16 2.75 2.33

P (j�̂ � � j = 0) 2. 7% 2.8% 3.1% 3.2% 3.0% 3.5%

P (j�̂ � � j � 1) 4.1% 5.4% 6.2% 5.5% 5.3% 11.3%

P (j�̂ � � j � 2) 6.3% 7.5% 9.0% 10.5% 11.7% 18.8%

P (j�̂ � � j � 3) 10.6% 9.7% 13.6% 17.6% 19.9% 31.0%

P (j�̂ � � j � 4) 13.8% 15.0% 18.7% 28.9% 28.9% 45.6%

P (j�̂ � � j � 5) 15.7% 19.9% 22.4% 34.4% 43.6% 64.7%

Table 5. Characteristics of estimates under step changes from �2 to �2 + b�2(j � �lt) with di�erent values of b�2 .

Criterion
Slope (b�2)

0.05 0.075 0.1 0.125 0.15 0.2

E(j�̂ � � j) 9.46 6.84 5.77 4.76 4.02 3.16

Std(j�̂ � � j) 5.14 4.07 3.06 2.71 2.23 1.84

P (j�̂ � � j = 0) 3.7% 5.3% 3.8% 5.4% 4.3% 4.9%

P (j�̂ � � j � 1) 7.0% 10.5% 11.5% 13.3% 13.5% 22.0%

P (j�̂ � � j � 2) 11.3% 16.1% 19.1% 23.6% 27.9% 39.3%

P (j�̂ � � j � 3) 14.1% 20.7% 24.0% 33.9% 45.0% 58.5%

P (j�̂ � � j � 4) 19.1% 29.8% 32.3% 48.0% 59.0% 77.7%

P (j�̂ � � j � 5) 26.9% 46.6% 44.7% 60.7% 74.8% 88.6%

Table 6. Characteristics of estimates under drifts from � to �+ b�(j � �lt) under di�erent values of b�.

Criterion
Slope (b�)

0.015 0.020 0.025 0.030 0.035

E(j�̂ � � j) 11.52 9.29 8.25 7.28 6.20

Std(j�̂ � � j) 6.05 5.02 4.53 4.47 3.76

P (j�̂ � � j = 0) 3.8% 3.9% 4.1% 4.3% 7.2%

P (j�̂ � � j � 1) 7.1% 7.2% 7.3% 7.4% 9.6%

P (j�̂ � � j � 2) 7.2% 11.1% 13.0% 13.3% 18.3%

P (j�̂ � � j � 3) 9.1% 15.0% 17.2% 17.8% 29.0%

P (j�̂ � � j � 4) 12.0% 17.0% 25.0% 25.3% 32.0%

P (j�̂ � � j � 5) 16% 26.0% 29.0% 36.5% 42.0%

the unit of their standard deviation. In the second
and third rows of Tables 1-3, the mean and standard
deviation of j�̂sc��scj values under di�erent magnitudes
of step changes are given. The rows 4-9 of Tables 1-3
also provide the precisions of the proposed estimator
in terms of the probability which lies in the speci�ed

tolerances. This criterion is denoted by p(j�̂sc � �scj =
0) and p(j�̂sc � �scj � i); i = 1; 2; 3; 4; 5. Table 1
tabulates the performance of the proposed estimator
in identifying the time of step change in the intercept
parameter (�1) for di�erent values of k1. Table 1 shows
that the values of estimated change point (�̂sc) are far
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Figure 1. Histogram of �sc values by step estimator under step change from (a) �1 to �1 + ��̂1
, (b) �2 to �2 + ��̂2

, and
(c) � to �+ ��̂.

from the real value (�sc = 50) under very small shifts
(k1 = 0:25; 0:5). In other words, the di�erence between
the real and estimated change points is high when the
magnitude of step change in intercept parameter is very
small. Hence, as expected, the accuracy and precision
of estimations under vary small shifts in intercept
parameter are low. However, the performance of our
proposed estimator under moderate and large step
shifts in intercept parameter is satisfactory. Note that
as the magnitude of the step change in the intercept
parameter increases, the performance of the proposed
estimator in �nding the real time of change under all
criteria improves.

The results of simulation experiments to estimate
the change point in slope parameter, �2, of the autocor-
related binary pro�le are given in Table 2. Similar to
Table 1, the value of E(j�̂sc � �scj) under very small
shifts is high. However, the value of this criterion
decreases as the magnitude of step change in slope
parameter increases. This result is also con�rmed by
standard deviation criterion (Std(j�̂sc��scj)) as well as
the corresponding probabilities.

Statistical performance of the proposed estimator
in determining the change point in parameter � is
summarized in Table 3. Analyzing the results of Table
3 is also similar to the previous ones. However, one can
see that the accuracy and precision of the proposed
estimator for shifts in autocorrelation coe�cient are
less than the corresponding results under shifts in the
intercept and slope parameters.

Here, for more elaboration of the results, the
graphical analysis of our proposed estimator to identify
the time of step changes in model parameters is also
provided. As illustrated in Figure 1, the proposed
estimator has its best performance in terms of both
accuracy and precision criteria when the shift occurs
in slope parameter.

4.2. Example 2
In this subsection, the performance of the proposed
estimator in identifying the time of linear trends in

the model parameters of Eq. (1) is evaluated through
simulation experiments. Similar to Example 1, �rst, we
generate 50 random samples with in-control regression
parameters of:

�0 = (�; �1; �2)0 = (0:15; 3; 2)0:

Recall that if any chart statistic corresponding to
the generated in-control samples exceeds the UCL, the
corresponding pro�le(s) is replaced by another one(s).
This procedure continuous until no false alarm occurs
for the �rst 50 random pro�les. Starting from the
51th sample, we induce a linear trend in the regression
parameters such that for jth: j = 51; 52; ::: pro�le,
�0 changes to �j = �0 + b(j � �lt). The linear trend
in the vector of model parameters continues until we
receive an out-of-control signal from the T 2 chart. At
period T , we stop generating random samples with
linear trend and apply the proposed drift estimator in
Subsection 3.2 to determine the change point. For any
shift magnitude vectors of b = (b�1 ; b�2 ; b�)0, we repeat
the simulation experiments by N = 1000 times and
each time, the value of �̂lt is estimated and recorded.
Then, the same criteria as those in Example 1 based
on the values of j�̂lt � �ltj are computed, the results of
which are summarized in Tables 4-6.

Table 4 displays the performance of the proposed
estimator in identifying the change point with linear
trend in parameter �1 under di�erent values of b�1 . As
seen in Table 4, for drift rate parameter b�1 = 0:05,
the expected and standard deviation values of j�̂lt��ltj
obtained by N = 1000 replicates are equal to 13.4933
and 7.0310, respectively. As the magnitude of b�1

increases, the performance of the proposed drift esti-
mator in terms of both accuracy and precision criteria
improves. Increasing the magnitude of shift in the
parameter �1 also leads to increasing the probability
values.

The performance of the proposed method in iden-
tifying the change point in parameter �2 concerning
the linear trend is assessed in Table 5. Similar to
Table 4, it is seen in Table 5 that the accuracy and
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Figure 2. Histogram of �lt values by drift estimator under drift rate parameter of (a) b�1 = 0:15, (b) b�2 = 0:15, and (c)
b� = 0:03.

Figure 3. Signal time by T 2 chart, actual and estimated change points under step shift.

precision of the estimated change points under linear
trend in parameter �2 improve signi�cantly as the
value of b�1 increases. It is worth mentioning that the
similar conclusions can also be drawn from probability
values.

The results of simulation experiments under dif-
ferent values of drift rate parameter of b� are sum-
marized in Table 6. The results con�rm that the
performance of the proposed estimator in identifying
the change point when parameter � increases linearly
is well satisfactory. In other words, under di�erent
rates of linear trend, the performance of the proposed
method not only in intercept and slope parameters but
also in autocorrelation coe�cient is satisfactory. As
expected, the results also show that as the drift rate
parameter increases, the values of E(j�̂lt � �ltj) and
Std(j�̂lt � �ltj) decrease while the probability values
increase.

Next, similar to Example 1, a graphical analysis
of the proposed drift estimator to identify the change
point in model parameters is also provided. As seen
in Figure 2, the proposed drift estimator has its best
performance in terms of both accuracy and precision
criteria when the linear trend is induced in the slope
parameter.

5. Illustrative examples

To illustrate the application of the proposed estimators,
two illustrative examples using the same data as those
in Section 4 are given in this section. In the �rst
illustrative example, we generate 50 in-control pro�les
with the vector parameter of �0 = (�; �1; �2)0 =
(0:15; 3; 2)0. After that, we generate out-of-control
pro�les in which a step change with magnitude of
k1 = 0:75 in unit of ��̂1

occurs in �1. The estimated
parameters of autocorrelated binary pro�les for each
sample along with the corresponding Hotelling's T 2

statistics are summarized in Table 7.
As shown in Figure 3, the T 2 control chart signals

at T = 62. Figure 3 shows that the proposed step and
drift estimators identify the time of change at �̂sc =
51 and �̂lt = 53, respectively. Hence, the proposed
step method estimates the change point with 1 sample
far from the actual value, while the di�erence between
the actual change point and the one estimated by drift
estimator equals 3.

Here, to illustrate the application of the proposed
drift estimator, we generate 50 in-control autocorre-
lated binary pro�les. Then, we induce a linear trend
in the intercept parameter from the 51th sample until
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Table 7. The estimated parameters and T 2 statistics for each sample under step shift from 51th sample.

Subgroup �̂ �̂1 �̂2 T 2 Subgroup �̂ �̂1 �̂2 T 2

1 0.0606 2.7442 2.0008 0.6180 32 0.2403 4.3380 3.3235 2.1969
2 0.1100 3.1349 2.5681 1.6906 33 0.1304 4.5000 3.1972 1.0632
3 0.0592 2.9083 1.1972 4.3557 34 0.0598 2.7521 1.3962 1.6628
4 0.0561 1.6910 1.3019 2.0036 35 0.1910 3.4264 1.8518 1.8313
5 0.1195 3.4983 2.3976 0.1158 36 0.2392 2.9222 1.8789 0.2662
6 0.0914 2.5250 1.6113 0.2938 37 0.2000 4.4686 2.7843 2.0471
7 0.0715 3.5422 2.9578 2.5255 38 0.1455 1.9456 0.8928 1.3079
8 0.1947 2.7290 1.5721 0.4495 39 0.0648 2.3356 1.4419 0.6086
9 0.2406 2.4321 1.5863 0.2887 40 0.1057 2.1094 0.7966 2.7139
10 0.0673 2.3721 1.4341 0.6026 41 0.1871 4.5000 2.2752 6.6897
11 0.0500 3.2278 2.2350 0.3153 42 0.0719 4.2297 2.3338 3.2891
12 0.1363 2.1478 1.3616 0.3840 43 0.1995 2.0542 1.3862 0.4604
13 0.2466 3.4288 2.3297 0.4853 44 0.1323 3.0477 2.0477 0.0100
14 0.1124 2.7462 1.7922 0.1013 45 0.0513 2.5148 1.2183 1.8615
15 0.2000 2.1666 1.4273 0.3307 46 0.2240 2.7670 1.2475 2.6741
16 0.0611 2.3398 1.0998 1.8480 47 0.1591 2.0174 2.1369 6.1934
17 0.2431 4.4342 3.1086 1.6001 48 0.0700 4.2273 2.9971 0.7305
18 0.0985 2.9727 1.9809 0.0875 49 0.0810 3.2711 2.0062 0.4329
19 0.1966 4.2462 3.5000 3.3832 50 0.0697 3.2939 1.8952 0.9854
20 0.2000 3.2313 2.1943 0.1364 51 0.1866 3.5421 2.1891 0.5871
21 0.0697 3.8186 2.5996 0.3656 52 0.0572 3.8903 1.5636 9.6421
22 0.0805 3.5594 2.0725 1.1147 53 0.2000 4.4096 2.6194 2.6431
23 0.2274 1.9708 1.4653 0.9249 54 0.0755 4.0734 1.7505 8.9126
24 0.0510 3.9300 2.8190 0.6115 55 0.0670 2.9887 1.0260 7.2608
25 0.1907 4.3013 2.9144 1.0240 56 0.1201 4.5000 2.1424 8.2643
26 0.0768 3.7706 2.1271 1.8466 57 0.0551 3.7045 1.7121 5.3828
27 0.0839 2.6471 1.5342 0.5624 58 0.1948 4.4957 2.3966 5.2532
28 0.0597 3.5016 2.4628 0.3238 59 0.0743 4.1534 1.7982 9.1816
29 0.2409 2.3711 1.0634 1.9430 60 0.1855 4.2920 1.7786 11.6203
30 0.0587 4.4642 3.1592 0.9948 61 0.0869 3.9507 1.7449 7.4756
31 0.2000 1.8734 1.5592 1.7781 62 0.1194 4.3480 1.6850 14.0431

the chart signals an out-of-control situation signal at
the 66th sample. The estimated parameters and the
corresponding T 2 statistics are given in Table 8.

As shown in Figure 4, the drift estimator
identi�es the change point at the 49th sample while
the estimated change point obtained by step estimator
is at the 54th pro�le. This issue implies that for linear
trends, the drift estimator outperforms the proposed
step estimator.

6. Conclusion and future research

In this paper, we proposed two estimators to identify
the time of step changes and drift in Phase II monitor-
ing of autocorrelated binary pro�les. We assumed that

the response values within each pro�le were autocor-
related and followed �rst order autoregressive (AR(1))
model. We investigated the performance of the pro-
posed estimators in terms of accuracy and precision
criteria through simulation studies. The results showed
that the proposed estimators under both step changes
and drift obtained accurate and precise estimates of
change point, especially under the medium to large
shifts. Then, we illustrated the application of the pro-
posed estimators under step change and drift through
two illustrative examples. The result of illustrative
examples con�rmed the satisfactory performance of the
proposed estimators. Estimating the change point of
binary pro�les in the case of between-pro�le autocor-
relation is recommended in the future research.
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Figure 4. Signal time by T 2 chart, actual and estimated change points under drift.

Table 8. The estimated parameters and T 2 statistics for each sample under liner trend from 51th sample.

Subgroup �̂ �̂1 �̂2 T 2 Subgroup �̂ �̂1 �̂2 T 2

1 0.1018 2.6683 2.0513 0.8423 34 0.1039 3.3918 2.8637 2.5485
2 0.0570 2.7676 1.9032 0.3966 35 0.0715 2.6282 1.8805 0.5223
3 0.1727 2.8256 1.5235 0.9231 36 0.2343 3.7304 2.3059 1.0694
4 0.0623 4.2922 2.7831 1.0257 37 0.2366 2.2484 1.0903 1.2538
5 0.2321 3.0548 2.1806 0.3727 38 0.0671 1.9189 1.5316 1.8765
6 0.2000 4.5000 2.3789 5.5259 39 0.1500 4.4415 3.3934 1.7428
7 0.2457 1.7742 1.6482 3.1474 40 0.1984 1.8808 1.4227 1.0581
8 0.2000 3.1897 1.5263 2.9786 41 0.0506 4.3828 3.3700 1.7350
9 0.2000 2.8618 1.1570 4.1943 42 0.1169 2.0331 1.4825 0.8845
10 0.0580 2.9684 1.7122 0.8029 43 0.0679 3.3590 2.0112 0.7047
11 0.1284 2.5091 1.6306 0.1566 44 0.0656 2.8691 2.2038 0.9461
12 0.0665 4.3925 2.7021 1.7456 45 0.0664 2.6394 1.6243 0.4422
13 0.0540 3.7752 2.6588 0.4427 46 0.0723 3.0968 2.1818 0.2661
14 0.0601 3.7048 3.3464 5.3891 47 0.2000 2.6643 2.0169 0.6361
15 0.2000 3.1905 1.4958 3.2747 48 0.2334 2.0235 1.6202 1.4125
16 0.0563 2.3539 1.4057 0.7196 49 0.0822 3.5653 1.8255 2.9044
17 0.0944 2.4412 1.7147 0.4576 50 0.0608 2.4502 1.5863 0.5169
18 0.2000 4.3583 2.5627 2.6908 51 0.3865 3.6132 2.3086 2.4699
19 0.0566 2.5564 2.1100 1.9443 52 0.0932 3.9834 2.6232 0.5271
20 0.0787 3.1842 1.6705 1.7956 53 0.0879 3.4464 2.6703 0.9995
21 0.0792 4.4353 3.0988 0.9036 54 0.1877 2.7437 2.3445 2.2264
22 0.0602 1.9406 0.8695 1.8878 55 0.1089 2.9225 1.7009 0.5032
23 0.0811 4.3051 3.1097 0.8795 56 0.0928 2.4960 1.4725 0.4666
24 0.0704 3.4749 2.0426 0.9569 57 0.3619 2.2443 0.6409 6.0328
25 0.2472 2.4469 1.8245 0.7451 58 0.0907 3.5223 1.6725 4.0663
26 0.1686 2.1693 1.2034 0.5343 59 0.0515 3.6331 1.4753 7.8819
27 0.2287 3.3552 1.7625 2.2351 60 0.3220 2.3661 0.8381 4.4119
28 0.0727 3.9396 2.3168 1.5662 61 0.0627 3.7633 1.8505 4.2851
29 0.1531 3.0947 2.8881 5.04463 62 0.1896 4.8838 2.2889 11.4358
30 0.1999 3.5107 2.9101 2.3694 63 0.3181 4.3018 2.4361 4.4280
31 0.0728 3.3906 2.4673 0.4167 64 0.1697 4.4736 2.1157 8.4919
32 0.0594 2.0997 1.2315 0.9167 65 0.0632 5.0000 2.7595 5.8540
33 0.1977 2.4001 1.8102 0.6833 66 0.9499 4.9491 3.4725 25.8430
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