The effect of uniaxial and torsional strains on the Density of States of Single Walled Carbon Nanotubes

Document Type : Research Note

Authors

Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Iran

Abstract

In this paper we investigate the effect of uniaxial and torsional strains on the Density of States (DOS) of single walled Carbon nanotubes (SWCNTs). We employ the nearest neighbor and the third nearest neighbor π-TB (Tight Binding) models for our investigation. It is shown that uniaxial and torsional strains in some cases of metallic SWCNTs not only open a band gap but also effectively increase the DOS of SWCNT. It is also shown that, the mentioned types of strain have different effects on the DOS of chiral SWCNTs; in some types, they increase the DOS at the band edges while in other types they decrease it at the band edges.

Keywords

Main Subjects


References
1. Iijima, S. Helical microtubules of graphitic carbon",
Nature (London), 354, pp. 56-58 (1991).
2. Ahmadpour, M.T., Hashemifar, S.J., and Rostamnejadi,
A. Size e ects on the structural, electronic,
and optical properties of (5,0) nite-length carbon
nanotube: An ab-initio electronic structure study", J.
App. Phys., 120(1), p. 014303 (2016).
3. Hayashi, D., Ueda, T., Nakai, Y., Kyakuno, H.,
Miyata, Y., Yamamoto, T., Saito, T., Hata, K., and
Maniwa, Y. Thermoelectric properties of single-wall
carbon nanotube lms: E ects of diameter and wet
environment", App. Phys. Express, 9(2), pp. 0251021-
0251024 (2016).
4. De Nicola, F., Salvato, M., Cirillo, C., Crivellarie, M.,
Boscardin, M., Scarselli, M., Nanni, F., Cacciotti, I.,
De Crescenzi, M., and Castrucci, P. Record eciency
of air-stable multi-walled carbon nanotube/silicon solar
cells", Carbon, 101, pp. 226-234 (2016).
5. Liu, F., Nakajima, Y., and Wakabayashi, K. Numerical
study of carbon nanotubes under circularly
polarized irradiation", App. Phys. Express, 9(8), pp.
0851011-0851014 (2016).
6. Mintmire, J.W. and White, C.T. Universal density of
states for carbon nanotubes", Phys. Rev. Lett., 81(12),
pp. 2506-2509 (1998).
7. Yang, L., Anantram, M.P., Han, J., and Lu, J.P.
Band-gap change of carbon nanotubes: E ect of small
uniaxial and torsional strain", Phys. Rev. B, 60(19),
pp. 13874-13877 (1999).
8. Heyd, R., Charlier, A., and McRae, E. Uniaxialstress
e ects on the electronic properties of carbon
nanotubes", Phys. Rev. B, 55(11), pp. 6820-6824
(1997).
9. Li, E.Y. Band gap engineering of carbon nanotubes
via regular addition patterns of covalent functional
groups", Carbon, 100, pp. 187-195 (2016).
10. Qiu, M., Xie, Y., Gao, X., Li, J., Deng, Y., Guan,
D., Maa, L., and Yuan, C. Band gap opening
and semiconductor-metal phase transition in (n, n)
single-walled carbon nanotubes with distinctive boronnitrogen
line defect", Phys. Chem. Chem. Phys., 18,
pp. 4643-4651 (2016).
11. Ohnishi, M., Suzuki, K., and Miura, H. E ects of
uniaxial compressive strain on the electronic-transport
properties of zigzag carbon nanotubes", Nano Research,
9, pp. 1267-1275 (2016).
12. Ma, T., Wen, S., Yan, L., Wu, C., Zhang, C., Zhang,
M., and Su, Z. The transport properties of silicon
and carbon nanotubes at the atomic scale: a rstprinciples
study", Phys. Chem. Chem. Phys., 18, pp.
23643-23650 (2016).
13. Reich, S., Maultzsch, J., Thomsen, C., and Ordejon,
P. Tight-binding description of graphene", Phys. Rev.
B, 66, pp. 0354121-0354125 (2002).
14. Pakkhesal, M. and Ghayour, R. Mechanically
changed bandgap of single walled carbon nanotube: a
third neighbor tight-binding approach", Cent. Eur. J.
Phys., 8, pp. 304-311 (2010).
15. Van Hove, L. The occurrence of singularities in the
elastic frequency distribution of a crystal", Phys. Rev.,
89, p. 1189 (1953).
16. Labany Saha, Amrita Ghosh, Medha Guha, Arpan
Deyasi Analytical computation of band structure and
density of states of single-walled carbon nanotube for
di erent structural parameters", Journal of Electron
Devices, 19, pp. 1686-1694 (2014).