References
1. Mallikarjuna, B. and Kant, T. Dynamics of laminated
composite plates with a higher order theory and nite
element discretization", J. Sound and Vibr., 126(3),
pp. 463-475 (1988).
2. Chakravorty, D., Bandyopadhyay, J.N., and Sinha,
P.K. Finite element free vibration analysis of doubly
curved laminated composite shells", J. Sound and
Vibr., 191(4), pp. 491-504 (1996).
3. Chakraborty, S. and Mukhopadhyay, M. Free vibrational
responses of FRP composite plates: Experimental
and numerical studies", J. Reinf Plast Comp.,
19(7), pp. 535-551 (2000).
4. Ahmadain, M.T. and Zangeneh, M.S. Forced vibration
analysis of laminated rectangular plate using
super element", Scientia Iranica, 10(2), pp. 260-265
(2003).
5. Kant, T. and Swaminathan, K. Analytical solutions
for free vibration of laminated composite and sandwich
plates based on higher order rened theory", Compos.
Struct., 53, pp. 73-85 (2001).
6. Mantari, J.L., Oktem, A.S., and Soares, C.G. Static
and dynamic analysis of laminated composite and
sandwich plates and shells by using a new higher-order
shear deformation theory", Compos. Struct., 94, pp.
37-49 (2011).
7. Cugnoni, J., Gmur, T., and Schorderet, A. Identi
cation by modal analysis of composite structures
modelled with FSDT and HSDT laminated shell nite
elements", Compos: Part A., 35, pp. 977-987 (2004).
8. Tornabene, F., Viola, E., and Fantuzzi, N. General
higher-order equivalent single layer theory for free
vibrations of doubly-curved laminated composite shells
and panels", Compos. Struct., 104, pp. 94-117 (2013).
9. Jeyaraj, P., Padmanabhan, C., and Ganesan, N.
Vibration and acoustic response of an isotropic plate
in a thermal environment", ASME J. Vib Acoust.,
130(5), p. 051005 (2008).
10. Mehar, K., Panda, S.K., Dehengia, A., and Kar,
V.R. Vibration analysis of functionally graded carbon
nanotube reinforced composite plate in thermal
environment", J. of Sandw. Struct. and Mater., 18(2),
pp. 151-173 (2015).
11. Ghafoori, E. and Asghari, M. Dynamic analysis of
laminated composite plates traversed by a moving
mass based on a rst-order theory", Compos. Struct.,
92, pp. 1865-1876 (2010).
12. Maleki, S., Tahani, M., and Andakhshideh, A. Transient
response of laminated plates with arbitrary
laminations and boundary conditions under general
dynamic loadings", Arch. Appl. Mech., 82, pp. 615-
630 (2012).
13. Diacenco, A., Jorge, A.B. and Silva, P. Dynamic analysis
of the in
uence of ber orientation in composite
laminated plates", J. Mech. Eng. Res., 7(1), pp. 1-8
(2015).
14. Shokrollahi, S. and Shafaghat, S. A global Ritz
formulation for the free vibration analysis of hybrid
metal-composite thick trapezoidal plates", Scientia
Iranica B., 23(1), pp. 249-259 (2016).
15. Kerur, S.B. and Ghosh, A. Active vibration control
of composite using AFC actuator and PVDF sensor",
J. Intel Mat. Syst. Str., 22(11), pp. 1149-1160 (2011).
16. Kumar, J.S., Raju, T.D., and Reddy, K.V.K. Vibration
analysis of composite laminated plates using
higher-order shear deformation theory with zig-zag
function", Indian J Sci Technol, 4(8), pp. 960-966
(2011).
17. Eruslu, S.O. and Aydogdu, M. Free vibration analysis
of short ber reinforced laminated plates with rst
shear deformation theory", Turkish J. Eng. Env. Sci.,
36, pp. 95-107 (2012).
18. Sahoo, S.S., Panda, S.K., and Mahapatra, T.R.,
Static, free vibration and transient response of laminated
composite curved shallow panel - An experimental
approach", Eur. J. Mech. A-Solid., 59, pp. 95-113
(2016).
S.S. Sahoo et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2218{2232 2231
19. Hirwani, C.K., Patil, R.K., Panda, S.K., Mahapatra,
S.S., Mandal, S.K., Srivastava, L., and Buragohain,
M.K. Experimental and numerical analysis of free
vibration of delaminated curved panel", Aerosp. Sci.
Technol., 54, pp. 353-370 (2016).
20. Li, J., Huo, Q., Li, X., Kong, X., and Wu, W.
Vibration analyses of laminated composite beams
using rened higher-order shear deformation theory",
Int. J. Mech. Mater. Des., 10, pp. 43-52 (2014).
21. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud,
S.R., and Adda Bedia, E.A. A new higher-order shear
and normal deformation theory for the static and free
vibration analysis of sandwich plates with functionally
graded isotropic face sheets", J. Sandw. Struct. Mater.,
15, pp. 671-703 (2013).
22. Bouderba, B., Houari, M.S.A., and Tounsi, A. Thermomechanical
bending response of FGM thick plates
resting on Winkler-Pasternak elastic foundations",
Steel and Compos. Struct., 14(1), pp. 85-104 (2013).
23. Zidi, M., Tounsi, A., Houari, M.S.A., and Beg, O.A.
Bending analysis of FGM plates under hygro-thermomechanical
loading using a four variable rened plate
theory", Aerospace Sci. Tech., 34, pp. 24-34 (2014).
24. Fekrar, A., Houari, M.S.A., Tounsi, A., and Mahmoud,
S.R. A new ve-unknown rened theory based on neutral
surface position for bending analysis of exponential
graded plates", Meccanica, 49, pp. 795-810 (2014).
25. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud,
S.R., and Anwar Beg, O. An ecient and simple
higher order shear and normal deformation theory for
functionally graded material (FGM) plates", Compos:
Part B., 60, pp. 274-283 (2014).
26. Bourada, M., Kaci, A., Houari, M.S.A., and Tounsi, A.
A new simple shear and normal deformations theory
for functionally graded beams", Steel and Compos.
Struct., 18(2), pp. 409-423 (2015).
27. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A., and
Tounsi, A. Wave propagation in functionally graded
plates with porosities using various higher-order shear
deformation plate theories", Struct. Eng. Mech., 53(6),
pp. 1143-1165 (2015).
28. Tounsi, A., Houari, M.S.A., and Bessaim, A. A new
3-unknowns non-polynomial plate theory for buckling
and vibration of functionally graded sandwich plate",
Struct. Eng. Mech., Int. J., 60(4), pp. 547-565 (2016).
29. Bennoun, M., Houari, M.S.A., and Tounsi, A. A novel
ve variable rened plate theory for vibration analysis
of functionally graded sandwich plates", Mech. Adv.
Mater. Struc., 23(4), pp. 423-431 (2016).
30. Bouderba, B., Houari, M.S.A., Tounsi, A., and Hassan,
S. Thermal stability of functionally graded sandwich
plates using a simple shear deformation theory",
Struct. Eng. Mech., 58(3), pp. 397-422 (2016).
31. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A.,
and Tounsi, A. Bending and free vibration analysis
of functionally graded plates using a simple shear
deformation theory and the concept the neutral surface
position", J. Braz. Soc. Mech. Sci. Eng., 38(1), pp.
265-275 (2016).
32. Bousahla, A.A., Benyoucef, S., Tounsi, A., and Hassan,
S. On thermal stability of plates with functionally
graded coecient of thermal expansion", Struct.
Eng. Mech., 60(2), pp. 313-335 (2016).
33. Draiche, A., Tounsi, A., and Hassan, S. A rened
theory with stretching eect for the
exure analysis
of laminated composite plates", Geomech and Eng.,
11(5), pp. 671-690 (2016).
34. Chikh, A., Tounsi, A., Habib, H., and Hassan, S.
Thermal buckling analysis of cross-ply laminated
plates using a simplied HSDT", Smart. Struct. Syst.,
19(3), pp. 289-297 (2017).
35. Tounsi, A., Houari, M.S.A., Benyoucef, S., and Adda
Bedia, E.A. A rened trigonometric shear deformation
theory for thermoelastic bending of functionally
graded sandwich plates", Aerospace Sci. Tech., 24, pp.
209-220 (2013).
36. Draiche, K., Tounsi, A., and Khal, Y. A trigonometric
four variable plate theory for free vibration of
rectangular composite plates with patch mass", Steel
Compos. Struct., 17(1), pp. 69-81 (2014).
37. Beldjelili, Y., Tounsi, A., and Mahmoud, S.R. Hygrothermo-
mechanical bending of S-FGM plates resting
on variable elastic foundations using a four-variable
trigonometric plate theory", Smart Struct. Syst., Int.
J., 18(4), pp. 755-786 (2016).
38. Hamidi, A., Houari, M.S.A., Mahmoud, S.R., Tounsi,
A. A sinusoidal plate theory with 5-unknowns and
stretching eect for thermomechanical bending of functionally
graded sandwich plates", Steel and Compos.
Struct., 18(1), pp. 235-253 (2015).
39. Houari, M.S.A., Tounsi, A., Bessaim, A., and Mahmoud,
S.R. A new simple three-unknown sinusoidal
shear deformation theory for functionally graded
plates", Steel and Compos. Struct., 22(2), pp. 257-276
(2016).
40. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A.,
and Bedia, E.A.A. A new quasi-3D hyperbolic shear
deformation theory for the static and free vibration
analysis of functionally graded plates", ASCE J. Eng.
Mech., 140, pp. 374-383 (2014).
41. Mahi, A., Adda Bedia, E.A., and Tounsi, A. A
new hyperbolic shear deformation theory for bending
and free vibration analysis of isotropic, functionally
graded, sandwich and laminated composite plates",
Appl. Math. Model., 39, pp. 2489-2508 (2015).
42. Shooshtari, A. and Razavi, S. Large-amplitude free
vibration of magneto-electro-elastic curved panels",
Scientia Iranica B., 23(6), pp. 2606-2615 (2016).
43. Milan, Z., Josef, S., Lenka, R., and Jan, S. Finite
element transient dynamic analysis of laminated com2232
S.S. Sahoo et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2218{2232
posite plates", Appl. Mech. Mater., 732, pp. 357-364
(2015).
44. Reddy, J.N., Mechanics of Laminated Composite
Plates and Shells", 2nd Ed., Florida, CRC Press
(2004).
45. Szekrenyes, A. Analysis of classical and rst-order
shear deformable cracked orthotropic plates", J. Compos.
Mater., 48(12), pp. 1441-1457 (2013).
46. Bathe, K.J., Finite Element Procedures in Engineering
Analysis, New Jersey, Prentice-Hall (1982).
47. Whitney, J.M. and Pagano, N.J. Shear deformation
in heterogeneous anisotropic plates", J. Appl. Mech.,
37(4), pp. 1031-1036 (1970).
48. Reddy, J.N. A simple higher order theory for laminated
composite plates", J. Appl. Mech., 51, pp. 745-
752 (1984).
49. Senthilnathan, N.R., Lim, K.H., and Chow, S.T.
Buckling of shear deformation plate", AIAA, 25(9),
pp. 1268-1271 (1987).
50. ASTM D 3039/D 3039M, Standard Test Method for
Tensile Properties of Polymer Matrix Composite Materials
(2006).
51. Crawley, E.F. The natural modes of graphite/epoxy
cantilever plates and shells", J. Compos. Mater., 13,
pp. 195-205 (1979).
52. Jones, R.M., Mechanics of Composite Materials, 2nd
Ed., Philadelphia, Taylor and Francis (1975).
53. Chen, J., Dawe, D.J., and Wang, S. Nonlinear
transient analysis of rectangular composite laminated
plates", Compos. Struct., 49, pp. 129-139 (2000).
54. Wang, S., Chen, J., and Dawe, D.J. Linear transient
analysis of rectangular laminates using spline nite
strips", Compos. Struct., 41, pp. 57-66 (1998).