References
1. Hung, E.S. and Senturia, S.D. Extending the travel
range of analog-tuned electrostatic actuators", J. Microelectromech.
S., 8(4), pp. 497-505 (1999).
2. Pei, J., Tian, F., and Thundat, T. Novel glucose
biosensor based on the microcantilever", Anal. Chem.,
76, pp. 292-297 (2004).
3. Pereira, R.D.S. Atomic force microscopy as a novel
pharmacological tool", Biochem. Pharmacol., 62, pp.
975-983 (2001).
4. Jafari-Talookolaei, R.A., Abedi, M., Simsek, M., and
Attar, M. Dynamics of a micro scale Timoshenko
beam subjected to a moving micro particle based on
the modied couple stress theory", J. Vib. Control,
24(3), pp. 527-548 (2018).
5. Mindlin, R. and Tiersten, H. Eects of couple-stresses
in linear elasticity", Arch. Ration. Mech. An., 11, pp.
415-448 (1962).
6. Toupin, R.A. Elastic materials with couple-stresses",
Arch. Ration. Mech. An., 11, pp. 385-414 (1962).
7. Yang, F., Chong, A., Lam, D., and Tong, P. Couple
stress based strain gradient theory for elasticity", Int.
J. Solids Struct., 39, pp. 2731-2743 (2002).
8. Park, S.K. and Gao, X.L. Bernoulli-Euler beam
model based on a modied couple stress theory", J.
Micromech. Microeng., 16, pp. 2355-2359 (2006).
9. Ma, H.M., Gao, X.L., and Reddy, J. A microstructure-
dependent Timoshenko beam model based
on a modied couple stress theory", J. Mech. Phys.
Solids, 56, pp. 3379-3391 (2008).
10. Dehrouyeh-Semnani, A.M. and Nikkhah-Bahrami, M.
A discussion on incorporating the Poisson eect in
micro-beam models based on modied couple stress
theory", Int. J. Eng. Sci., 86, pp. 20-25 (2015).
11. Reddy, J.N. and El-Borgi, S. Eringen's nonlocal
theories of beams accounting for moderate rotations",
Int. J. Eng. Sci., 82, pp. 159-177 (2014).
12. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., and
Ahmadian, M.T. Investigation of the size-dependent
dynamic characteristics of atomic force microscope
microcantilevers based on the modied couple stress
theory", Int. J. Eng. Sci., 48, pp. 1985-1994 (2010).
13. Asghari, M., Kahrobaiyan, M.H., and Ahmadian, M.T.
A nonlinear Timoshenko beam formulation based on
the modied couple stress theory", Int. J. Eng. Sci.,
48, pp. 1749-1761 (2010).
14. Akgoz, B. and Civalek, O. Strain gradient elasticity
and modied couple stress models for buckling analysis
of axially loaded micro-scaled beams", Int. J. Eng.
Sci., 49, pp. 1268-1280 (2011).
15. Simsek, M. and Reddy, J.N. Bending and vibration of
functionally graded micro-beams using a new higher
order beam theory and the modied couple stress
theory", Int. J. Eng. Sci., 64, pp. 37-53 (2013).
16. Akgoz, B. and Civalek, O. Free vibration analysis
of axially functionally graded tapered Bernoulli-Euler
micro-beams based on the modied couple stress theory",
Compos. Struct., 98, pp. 314-322 (2013).
17. Mohammad Abadi, M. and Daneshmehr, A.R. An investigation
of modied couple stress theory in buckling
analysis of micro composite laminated Euler-Bernoulli
and Timoshenko beams", Int. J. Eng. Sci., 75, pp.
40-53 (2014).
18. Darijani, H. and Mohammadabadi, H. A new deformation
beam theory for static and dynamic analysis of
micro-beams", Int. J. Mech. Sci., 89, pp. 31-39 (2014).
19. Dai, H.L., Wang, Y.K., and Wang, L. Nonlinear dynamics
of cantilevered micro-beams based on modied
couple stress theory", Int. J. Eng. Sci., 94, pp. 103-112
(2015).
20. Mohammad-Abadi, M. and Daneshmehr, A.R. Size
dependent buckling analysis of micro-beams based on
modied couple stress theory with high order theories
and general boundary conditions", Int. J. Eng. Sci.,
74, pp. 1-14 (2014).
21. Simsek, M. Nonlinear static and free vibration analysis
of micro-beams based on the nonlinear elastic
foundation using modied couple stress theory and
He's variational method", Compos. Struct., 112, pp.
264-272 (2014).
22. Ghayesh, M.H., Farokhi, H., and Amabili, M. Nonlinear
dynamics of a microscale beam based on the
modied couple stress theory", Compos. Eng., 50, pp.
318-324 (2013).
23. Farokhi, H., Ghayesh, M.H., and Amabili, M. Nonlinear
dynamics of a geometrically imperfect micro-beam
based on the modied couple stress theory", Int. J.
Eng. Sci., 68, pp. 11-23 (2013).
24. Wang, J.T.S., Liu, Y.Y., and Gibby, J.A. Vibrations
of split beams", J. Sound Vib., 84, pp. 491-502 (1982).
25. Mujumdar, P.M. and Suryanarayan, S. Flexural vibrations
of beams with delaminations", J. Sound Vib.,
125, pp. 441-461 (1988).
26. Shen, M.H. and Grady, J.E. Free vibrations of delaminated
beams", AIAA J., 30, pp. 1361-1370 (1992).
27. Della, C.N., Shu, D., and MSRao, P. Vibrations of
beams with two overlapping delaminations", Compos.
Struct., 66, pp. 101-108 (2004).
28. Manoach, E., Warminski Mitura, J.A., and Samborski,
S. Dynamics of a composite Timoshenko beam with
delamination", Mech. Res. Commun., 46, pp. 47-53
(2012).
29. Kargarnovin, M.H., Ahmadian, M.T., and Jafari-
Talookolaei, R.A. Forced vibration of delaminated
Timoshenko beams subjected to a moving load", Sci.
Eng. Compos. Mater., 19, pp. 145-157 (2012).
688 R.-A. Jafari-Talookolaei et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 675{688
30. Kargarnovin, M.H., Jafari-Talookolaei, R.A., and Ahmadian,
M.T. Vibration analysis of delaminated
Timoshenko beams under the motion of a constant
amplitude point force traveling with uniform velocity",
Int. J. Mech. Sci., 70, pp. 39-49 (2013).
31. Szekrenyes, A. Coupled
exural-longitudinal vibration
of delaminated composite beams with local stability
analysis", J. Sound Vib., 333, pp. 5141-5164
(2014).
32. Szekrenyes, A. A special case of parametrically excited
systems: Free vibration of delaminated composite
beams", Eur. J. Mech. A-Solid, 49, pp. 82-105
(2015).
33. Attar, M., Karrech, A., and Regenauer-Lieb, K. Nonlinear
modal analysis of structural components subjected
to unilateral constraints", J. Sound Vib., 389,
pp. 380-410 (2016).
34. Attar, M., Karrech, A., and Regenauer-Lieb, K. Nonlinear
analysis of beam-like structures on unilateral
foundations: a lattice spring model", Int. J. Solids
Struct., 88, pp. 192-214 (2016).
35. Clive, L.D. and Shames, I.H., Solid Mechanics, A
Variational Approach, Springer (2013).