# Stagnation Point Flow of Micropolar Maxwell Fluid over Riga Plate under the Influence of Heat and Mass Transfer

Document Type : Article

Authors

1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2 - Mathematics and its Applications in Life Sciences Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam. - Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3 Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box 741, Tabuk 71491, Saudi Arabia

4 Al-Farabi Kazakh National University, av. al-Farabi 71, 050040, Almaty, Kazakhstan

10.24200/sci.2021.53858.3454

Abstract

In this paper, we investigated the stagnation point flow of Maxwell viscoelasticity with incompressible based micropolar fluid over a Riga plate. The mathematical model has been constructed though micropolar fluid flows over Riga plate. The implement the boundary layer approximation, the system of partial differential equations is produced through momentum equation along with micro inertia theory. Nonlinear partial differential equations are become dimensionless nonlinear ordinary differential equations through suitable similarity transformations. This system is solved numerical scheme via BVP4C method. The effects of involving physical parameters like as dimensionless parameter, Modified Hartman number, Material parameter, Slip condition σ_s, Viscoelastic parameter δ_m and Soret coefficient S_T are highlighted through graphs and numerical results. The physical quantities like as Skin friction, local Nusselt number and local Sher-wood number are highlighted through tables. R is increasing with increasing dimensionless parameter, Material parameter K and Slip condition σ_s. R is decreasing with increasing behavior of Modified Hartman number Z and viscoelastic parameter δ_m.

Keywords

#### References

References
1      Lukaszewicz, G. Micropolar fluids: theory and applications. Springer Science & Business Media, (1999).
2      Eringen, A. C. Microcontinuum field theories: II. Fluent media (Vol. 2). Springer Science & Business Media, (2001).
3      Wang, X. L., & Zhu, K. Q. A study of the lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing (T1516). Tribology International, 37(6), 481-490, (2004).
4      Nadeem, S., Akbar, N. S., & Malik, M. Y. Exact and numerical solutions of a micropolar fluid in a vertical annulus. Numerical Methods for Partial Differential Equations, 26(6), 1660-1674, (2010).
5      Hussain, S. T., Nadeem, S., & Haq, R. U. Model-based analysis of micropolar nanofluid flow over a stretching surface. The European Physical Journal Plus, 129(8), 161, (2014).
6      Ellahi, R., Rahman, S. U., Nadeem, S., & Akbar, N. S. Influence of heat and mass transfer on micropolar fluid of blood flow through a tapered stenosed arteries with permeable walls. Journal of Computational and Theoretical Nanoscience, 11(4), 1156-1163, (2014).
7      Rawi, N. A., Ilias, M. R., Isa, Z. M., & Shafie, S. G-Jitter induced mixed convection flow and heat transfer of micropolar nanofluids flow over an inclined stretching sheet. In AIP Conference Proceedings (Vol. 1775, No. 1, p. 030020). AIP Publishing, (2016).
8      Abbas, N., Saleem, S., Nadeem, S., Alderremy, A. A., & Khan, A. U. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 9, 1224-1232, (2018).
9      Nadeem, S., Malik, M. Y., & Abbas, N.  Heat transfer of three dimensional micropolar fluids on Riga plate. Canadian Journal of Physics, (ja), (2019).
10   Mollamahdi, M., Abbaszadeh, M., & Sheikhzadeh, G. A. Analytical study of Al2O3-Cu/water micropolar hybrid nanofluid in a porous channel with expanding/contracting walls in the presence of magnetic field. Scientia Iranica, 25(1), 208-220, (2018).
11   Nayak, M. K., Zeeshan, A., Pervaiz, Z., & Makinde, O. D. Modelling, Measurement and Control B. Journal Homepage: http://iieta. org/journals/mmc_b88(1), 33-41, (2019).
12   Abro, K. A., & Yildirim, A. An analytic and mathematical synchronization of micropolar nanofluid by Caputo-Fabrizio approach. Scientia Iranica, 26(6), 3917-3927, (2019).
13   Atif, S. M., Hussain, S., & Sagheer, M. Effect of thermal radiation on MHD micropolar Carreau nanofluid with viscous dissipation, Joule heating, and internal heating. Scientia Iranica. Transaction F, Nanotechnology, 26(6), 3875-3888, (2019).
14   Gailitis, A. K., & Lielausis, O. A. On the possibility of drag reduction of a flat plate in an electrolyte. Appl. Magnetohydrodyn. Trudy Inst. Fisiky AN Latvia SSR, 12, 143, (1961).
15   Grinberg, E. On determination of properties of some potential fields. Applied Magnetohydrodynamics. Reports of the Physics Institute, 12, 147-154, (1961).
16   Pantokratoras, A., & Magyari, E. EMHD free-convection boundary-layer flow from a Riga-plate. Journal of Engineering Mathematics, 64(3), 303-315, (2009).
17   Magyari, E., & Pantokratoras, A. Aiding and opposing mixed convection flows over the Riga-plate. Communications in Nonlinear Science and Numerical Simulation, 16(8), 3158-3167, (2011).
18   Ayub, M., Abbas, T., & Bhatti, M. M. Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. The European Physical Journal Plus, 131(6), 193, (2016).
19   Ramzan, M., Bilal, M., & Chung, J. D. Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction-A numerical approach. Chinese Journal of Physics, 55(4), 1663-1673, (2017).
20   Zaib, A., Haq, R. U., Chamkha, A. J., & Rashidi, M. M. Impact of partial slip on mixed convective flow towards a Riga plate comprising micropolar TiO2-kerosene/water nanoparticles. International Journal of Numerical Methods for Heat & Fluid Flow, (2018).
21   Rasool, G., & Zhang, T. Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Heliyon, 5(4), e01479, (2019).
22   Bhatti, M. M., Zeeshan, A., Ellahi, R., & Shit, G. C. Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. Advanced Powder Technology, 29(5), 1189-1197, (2018).
23   Nayak, M. K., Shaw, S., Makinde, O. D., & Chamkha, A. J. Effects of Homogenous–Heterogeneous reactions on radiative NaCl-CNP nanofluid flow past a convectively heated vertical Riga plate. Journal of Nanofluids, 7(4), 657-667, (2018).
24   Mehmood, R., Nayak, M. K., Akbar, N. S., & Makinde, O. D. Effects of thermal-diffusion and diffusion-thermo on oblique stagnation point flow of couple stress Casson fluid over a stretched horizontal Riga plate with higher order chemical reaction. Journal of Nanofluids, 8(1), 94-102, (2019).
25   Nayak, M. K., Shaw, S., Makinde, O. D., & Chamkha, A. J. Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model. Journal of Nanofluids, 8(1), 51-62, (2019).
26   Riaz¹, A., Ellahi, R., Bhatti, M. M., & Marin, M. Study of Heat and Mass Transfer on Eyring-Powell Fluid Model Propagating Peristaltically through a Rectangular Complaint Channel, DOI: 10.1615/HeatTransRes.2019025622, (2019).
27   Khan, A. A., Bukhari, S. R., Marin, M., & Ellahi, R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11), (2019).
28   Hiemenz, K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech. J., 326, 321-324, (1911).
29   Howarth, L. CXLIV. The boundary layer in three dimensional flow.—Part II. The flow near a stagnation point. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(335), 1433-1440, (1951).
30   Ishak, A., Jafar, K., Nazar, R., & Pop, I. MHD stagnation point flow towards a stretching sheet. Physica A: Statistical Mechanics and its Applications, 388(17), 3377-3383, (2009).
31   Van Gorder, R. A., & Vajravelu, K. Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet. Mechanics Research Communications, 37(1), 113-118, (2011).
32   Fang, T., Chia-fon, F. L., & Zhang, J. The boundary layers of an unsteady incompressible stagnation-point flow with mass transfer. International Journal of Non-Linear Mechanics, 46(7), 942-948, (2011).
33   Nadeem, S., Abbas, N., & Khan, A. U. Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results in Physics, 8, 829-835, (2018).
34   Nadeem, S., & Abbas, N.  On both MHD and slip effect in Micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Canadian Journal of Physics, (ja), (2018).
35   Iacopini, S., & Piazza, R.  Thermophoresis in protein solutions. EPL (Europhysics Letters), 63(2), 247, (2003).
36   Putnam, S. A., Cahill, D. G., & Wong, G. C.  Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir, 23(18), 9221-9228, (2007).
37   Braibanti, M., Vigolo, D., & Piazza, R. Does thermophoretic mobility depend on particle size. Physical Review Letters, 100(10), 108303. (2008).
38   Khan, A. A., Usman, H., Vafai, K., & Ellahi, R. Study of peristaltic flow of magnetohydrodynamics Walter's B fluid with slip and heat transfer. Scientia Iranica, 23(6), 2650-2662,(2016).
39   Niranjan, H., Sivasankaran, S., & Bhuvaneswari, M. Chemical reaction, Soret and Dufour effects on MHD mixed convection stagnation point flow with radiation and slip condition. Scientia Iranica. Transaction B, Mechanical Engineering, 24(2), 698, (2017).
40   Ijaz, N., Zeeshan, A., Bhatti, M. M., & Ellahi, R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. Journal of Molecular Liquids, 250, 80-87, (2018).
Nayak, M. K., Hakeem, A. K., & Makinde, O. D. Influence of Catteneo-Christov Heat Flux Model on Mixed Convection Flow of Third Grade Nanofluid over an Inclined Stretched Riga Plate. In Defect and Diffusion Forum (Vol. 387, pp. 121-134). Trans Tech Publications Ltd, (2018).