Complex dynamics of a Fitzhugh-Rinzel neuron model considering the effect of electromagnetic induction

Document Type : Article

Authors

1 Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China

2 Mathematical Institute, University of Oxford, Andrew Wiles Building, Oxford, UK

3 Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

10.24200/sci.2021.57547.5295

Abstract

Different single computational neuron models have been proposed in the literature. Most of them belong to the Hodgkin–Huxley (H-H) type, in which they can produce complex behavior of the neuron and have efficient computational cost. In this paper, a modified FitzHugh-Rinzel (FH-R) model considering the effect of magnetic induction is proposed. Different features of the model are explored from a complex and nonlinear perspective. For instance, the impact of the magnetic field on the stability of the equilibrium points is studied by stability analysis. Bifurcation analysis reveals that the proposed neuron model has multi-stability. Furthermore, the spatiotemporal behavior of the proposed model is investigated in the complex network consisting of FH-R oscillators, and the effect of external stimuli is explored on wave propagation of the network.

Keywords


References       1. Skarda, C.A. and Freeman, W.J. Chaos and the new       science of the brain", Concepts in Neuroscience, 1(2),       pp. 275{285 (1990).       2. Kim, J.H. and Stringer, J., Applied Chaos, New York,       NY: John Wiley and Sons, Inc. (1992).       3. Hodgkin, A.L. and Huxley, A.F. Quantitative description       of membrane current and its application       to conduction and excitation in nerve", J. Physiol,       117(4), pp. 500{544 (1952).       4. Ma, J. and Tang, J. A review for dynamics of       collective behaviors of network of neurons", Sci. China       Technol, 58, pp. 2038{2045 (2015).       5. Hindmarsh, J.L. and Rose, R.M. A model of neuronal       bursting using three coupled _rst order di_erential       equations", Proc. Roy. Soc. London B, 221, pp. 87{       102 (1984).       6. Bao, B., Zhu, Y., Ma, J., et al. Memristive neuron       model with an adapting synapse and its hardware       experiments", Science China Technological Sciences,       pp. 1{11 (2021).       7. Xu, Y., Ma, J., Zhan, X., et al. Temperature e_ect on       memristive ion channels", Cognitive Neurodynamics,       13(6), pp. 601{611 (2019).       8. Xu, Y., Guo, Y., Ren, G., et al. Dynamics and       stochastic resonance in a thermosensitive neuron", Applied       Mathematics and Computation, 385, p. 125427       (2020).       9. Liu, Y., Xu, W.J., Ma, J., et al. A new photosensitive       neuron model and its dynamics", Frontiers of       Information Technology & Electronic Engineering, 21,       pp. 1387{1396 (2020).       10. Xu, Y., Liu, M., Zhu, Z., et al. Dynamics and coherence       resonance in a thermosensitive neuron driven       by photocurrent", Chinese Physics B, 29(9), p. 098704       (2020).       11. Zhou, P., Yao, Z., Ma, J., et al. A piezoelectric       sensing neuron and resonance synchronization between       1696 Z. Wang et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1685{1697       auditory neurons under stimulus", Chaos, Solitons &       Fractals, 145, p. 110751 (2021).       12. Wang, Y., Ma, J., Xu, Y., et al. The electrical activity       of neurons subject to electromagnetic induction and       Gaussian white noise", International Journal of Bifurcation       and Chaos, 27(2), pp. 1750030{1750042 (2017).       13. FitzHugh, R. Impulses and physiological states in       theoretical models of nerve membrane", Biophys. J.,       1(6), pp. 445{466 (1961).       14. Nagumo, J., Arimoto, S., and Yoshizawa, S. An active       pulse transmission line simulating nerve axon", Proc.       of the IRE, 50(10), pp. 2061{2070 (1962).       15. Pouryahya, S. Nonlinear dynamics, synchronisation       and chaos in coupled FHN cardiac and neural       cells", Ph.D., National University of Ireland Maynooth       (2013).       16. Guckenheimer, J. and Kuehn, C. Homoclinic orbits       of the FitzHugh-Nagumo equation: Bifurcations in the       full system", SIAM J. Appl. Dynam. Syst., 9(1), pp.       138{153 (2010).       17. Ho_, A., dos Santos, J.V., Manchein, C., et al. Numerical       bifurcation analysis of two coupled FitzHugh-       Nagumo oscillators", Eur. Phys. J. B, 87(7), pp. 1{9       (2014).       18. Pal, K., Ghosh, D., and Gangopadhyay, G. Synchronization       and metabolic energy consumption in       stochastic Hodgkin-Huxley neurons: Patch size and       drug blockers", Neurocomputing, 422, pp. 222{234       (2021).       19. Doss-Bachelet, C., Fran_coise, J.P., and Piquet,       C. Bursting oscillations in two coupled FitzHugh-       Nagumo systems", ComPlexUs, 1(3), pp. 101{111       (2003).       20. Majhi, S. and Ghosh, D. Alternating chimeras in       networks of ephaptically coupled bursting neurons",       Chaos: An Interdisciplinary Journal of Nonlinear       Science, 28(8), p. 083113 (2018).       21. Bera, B.K., Rakshit, S., Ghosh, D., et al. Spike       chimera states and _ring regularities in neuronal hypernetworks",       Chaos: An Interdisciplinary Journal of       Nonlinear Science, 29(5), p. 053115 (2019).       22. Makarov, V.V., Kundu, S., Kirsanov, D.V., et al.       Multiscale interaction promotes chimera states in       complex networks", Communications in Nonlinear       Science and Numerical Simulation, 71, pp. 118{129       (2019).       23. Ciszak, M., Euzzor, S., Arecchi, F.T., et al. Experimental       study of _ring death in a network of chaotic       FitzHugh-Nagumo neurons", Phys. Rev. E, 87(2),       022919(022911-022917) (2013).       24. Gray, C.M. and McCormick, D.A. Chattering cells:       super_cial pyramidal neurons contributing to the generation       of synchronous oscillations in the visual vortex",       Science, 274(5284), pp. 109{113 (1996).       25. Kudryashov, N.A. Asymptotic and exact solutions of       the FitzHugh-Nagumo model", Regular and Chaotic       Dynamics, 23(2), pp. 152{160 (2018).       26. Tehrani, N.F. and Razvan, M. Bifurcation structure       of two coupled FHN neurons with delay", Mathematical       Biosciences, 270, pp. 41{56 (2015).       27. Zemlyanukhin, A.I. and Bochkarev, A.V. Analytical       properties and solutions of the FitzHugh-Rinzel       model", Russian Journal of Nonlinear Dynamics,       15(1), pp. 3{12 (2019).       28. Wojcik, J. and Shilnikov, A., Voltage Interval Mappings       for an Elliptic Bursting Model, 12, Springer,       Cham (2015).       29. Belykh, V.N. and Pankratova, E.V. Chaotic synchronization       in ensembles of coupled neurons modeled       by the FitzHugh-Rinzel system", Radiophys. Quantum       El., 49(11), pp. 910{921 (2006).       30. Shima, S.I. and Kuramoto, Y. Rotating spiral waves       with phase-randomized core in nonlocally coupled       oscillators", Phys. Rev. E, 69, p. 036213 (2004).       31. Kuramoto, Y. and Shima, S.I. Rotating spirals without       phase singularity in reaction-di_usion systems",       Progr. Theor. Phys. Suppl, 150, p. 115 (2003).       32. Kuramoto, Y., Shima, S.I., Battogtokh, D., et al.       Mean-_eld theory revives in self-oscillatory _eld with       Non-Local coupling", Prog. Theor. Phys. Suppl, 161,       p. 127 (2006).       33. Brooks, H.A. and Bresslo_, P.C. Quasicycles in the       stochastic hybrid Morris-Lecar neural model", Physical       Review E, 92, p. 012704 (2015).       34. Hou, Z. and Xin, H. Noise-sustained spiral waves:       e_ect of spatial and temporal memory", Phys Rev Lett,       89, p. 280601 (2002).       35. Mondal, A., Sharma, S.K., Upadhyay, R.K., et al.       Firing activities of a fractional-order FitzHugh-Rinzel       bursting neuron model and its coupled dynamics", Sci       Rep, 9, p. 15721 (2019).       36. Rinzel, J. A formal classi_cation of bursting mechanisms       in excitable systems, in mathematical topics       in population biology", Morphogenesis and Neurosciences,       Lecture Notes in Biomathematics, 71, pp.       267{281 (1987).       37. Rinzel, J. and Troy, W.C. Bursting phenomena in       a simpli_ed oregonator ow system model", J Chem       Phys, 76, pp. 1775{1789 (1982).       38. Lv, M., Wang, C., Ren, G., et al. Model of electrical       activity in a neuron under magnetic ow e_ect",       Nonlinear Dyn., 85, pp. 1479{1490 (2016).       39. Wolf, A., Swift, J.B., Swinney, H.L., et al. Determining       Lyapunov exponents from a time series", Physica       D: Nonlinear Phenomena, 16(3), pp. 285{317 (1985).