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Abstract. Di�erent single-neuron computational models have been proposed in di�erent
pieces of the literature. Most of these models belong to the Hodgkin-Huxley (H-H) type,
which facilitates producing complex neuron behavior and ensures e�cient computational
cost. In this paper, a modi�ed FitzHugh-Rinzel (FH-R) model considering the e�ect
of magnetic induction was proposed. Di�erent features of the model were explored
from a complex and nonlinear perspective. For instance, the impact of magnetic �eld
on the stability of equilibrium points was studied using stability analysis. Bifurcation
analysis indicated that the proposed neuron model enjoyed multistability. Furthermore,
the spatiotemporal behavior of the proposed model was investigated in a complex network
consisting of FH-R oscillators. The e�ect of external stimuli on wave propagation in the
network was explored.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Chaos and fractal geometry are known as key factors
in modeling the alpha rhythm of the brain and nervous
system. Considering these factors helps design a more
accurate model of neurological disease [1]. It is claimed
that the brain's electrical activities are chaotic. More-
over, fractal geometry can be utilized to model a large
population of interactive neurons crowded in the brain
[1{3]. A horde of models was developed to understand
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and grasp the perplexing design of the brain. One of
the fundamental and well-known neuron oscillators is
the Hodgkin-Huxley (H-H) model [3], in which the axon
electrical activities of a squid's nerve cell were studied.
This model is composed of four di�erential equations
with eight auxiliary algebraic functions. The variables
of the H-H model include membrane potential, ionic
currents, and inactivation of Na channel. The H-
H model parameters are biologically signi�cant and
measurable. There are many H-H type models in the
literature known as the conductance-based neuronal
models [3{5]. The complexity of these models is lower
than the H-H model which allows scientists to explore
the synaptic and dendritic e�ects [6], the interplay be-
tween ionic currents [7], thermal [8] and photosensitive
e�ects on excitability of the neuron [9,10], and other
topics related to the dynamics of a single cell [11].
These models can reasonably predict the response of
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an individual neuron to external stimulation; however,
this prediction turned out to be too complicated for
modeling two- and three-dimensional arrays of con-
nected neurons [12].

In H-H equations, membrane potential (V ) and
sodium current (m) variables undergo rapid changes
compared with potassium (n) and inactivation of
Na current (h). Upon setting slowly changing vari-
ables constant arbitrarily, Fitzhugh proposed a two-
dimensional neuron model in 1961 [13]. Alongside
these reductions, using phase space analysis changes
the above model into a practical, intricate neuron
model. A year later, in 1962, in line with Fitzhugh,
Nagumo's investigation reached the same results [14].
By including an externally supplied current (I), the
Fitzhugh-Nagumo (FHN) model is presented. FHN
model can potentially describe the qualitative nature of
the neural activity and impulse propagation similar to
the H-H model [15]. The homoclinic orbits of the FHN
model from the fast-slow perspective were studied in
[16]. Synchronization of both directed and undirected
electrical couplings of neurons was discussed with the
FHN model in [17]. Alongside the FHN neuron
model, the synchronization of the network consisting
of the H-H neuron model was presented in [18]. The
bursting phenomenon in a coupled identical neuron was
analyzed using the FHN model in [19]. Emergence of
alternative chimeras in the coupled bursting neurons
was explored in [20]. The collective behavior of hyper
neural networks [21] and complex neural networks
consisting of the number of sub-networks non-locally
coupled with each other [22] was investigated. Oscilla-
tory chaotic nature, especially chaotic spiking, referred
to as �ring death, was identi�ed and studied in FHN
oscillators in a network [23]. Most of the studies in
the literature have investigated the various behaviors of
FHN except the bursting nature of neurons. Chattering
neurons in a cat neocortex [24] revealed �re periodic
bursts of spikes when stimulated, which led to the brain
oscillations in the gamma frequency [25,26].

To overcome the drawback of the FHN model,
the FitzHugh-Rinzel (FH-R) model was proposed by
adding a super slow variable. In [27,28], the spiking,
bursting, and quiescent behavior of the FH-R model
were studied. Networks of di�usively coupled neurons
consist of FH-R oscillators exploring various com-
plex dynamical behaviors and synchronization e�ects
[29], especially the spatiotemporal pattern identi�ed
in coupled systems. A complex pattern with both
subgroups of coherent and incoherent oscillators can
emerge in networks known as chimeras. In [30{32],
spiral waves in a network of phase-locked oscillators
were reported as two-dimensional chimeras. Wave
propagation in a network of dynamical oscillators was
reported in both excitable [33] and noisy sub-excitable
media [34].

2. Mathematical model

Fitzhugh and Rinzel introduced the FH-R model [35{
37] by evolving the FHN neuron model. The traditional
FHN model clearly explains the excitations and spike
generations of a neuron but cannot replicate the �ring
patterns of cortical neurons [38]. In the case of
the FH-R model, an additional slow subsystem was
introduced alongside the regular FHN model. This
new model could produce various �ring activities to
properly determine the related parameters. Here,
a modi�ed FH-R neuron model that considered the
impact of magnetic �eld was proposed with a fourth-
order di�erential equation as follows:

_v = v � v3

3
� w + y + Iext � k0v(�+ ��2);

_w = �(0:7 + v � 0:8w);

_y = �(c� y � v);

_�� k1v � k2�; (1)

where v denotes membrane potential, w fast variable,
y slow current, and � impact of magnetic �eld on the
membrane. There are six parameters in Model (1):
Iext is the external excitation current, � the param-
eter controlling the fast subsystem, � the parameter
controlling the slow subsystem, k0 the electromagnetic
induction current's gain, k1 = 1

L with L representing
the turn number of the cells or media as L turns into
coil for estimating magnetic �eld e�ect, and k2 the cell
leakage 
ux degree. The parameter c and the external
current Iext are taken as control variables in the entire
discussion presented in the paper. The parameter
values for System (1) include the following:

Iext = 0:73; � = 0:01; � = 0:35; c = �0:55;

� = 0:1; � = 0:03; k0 = 0:1;

k1 = 0:01; and k2 = 0:5:

In the paper, two cases are discussed: Case A
for System (1) without electromagnetic induction and
Case B for System (1) considering electromagnetic
induction.

3. Stability analysis

3.1. Case A
First, the equilibrium states of Case A for the new FH-
R model are determined. It is convenient to replace the
numerical values of some of the parameters by arbitrary
names:

_v = v � v3

3
� w + y + Iext = F;
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_w = P4(P1 + v + P2w) = G;

_y = P5(c� y � v) = H; (2)

where P1 = 0:7, P2 = 0:8, c = �0:55, P4 = � = 0:01,
P5 = � = 0:35, and Iext = 0:73.

In this study, Iext and c are chosen as two bifur-
cation parameters by keeping other parameters �xed
to their prescribed numerical values. The equilibrium
points in Eq. (2) are calculated by setting the right-
hand side of the equation to zero. Setting H = 0 gives
y = P3 � v, while setting G = 0 gives w = v+P1

P2
.

Substituting F = 0 yields a cubic equation for v as
follows:

v3 +
3
P2
v + 3

�
P1

P2
� c� Iext

�
= 0: (3)

Solving Eq. (3) leads to one real root for v when
the external current ranges between [�10; 10]. For
�2:86552 � Iext � 2:53188, there is a pair of complex
roots with nonzero imaginary parts. The equilibrium
point in Eq. (2) for the chosen set of parameters is
(v�; w�; y�) = (�0:51877;�0:22654;�0:3223E � 10).
Figure 1 shows the absolute value of the equilibrium
point for 0 � Iext � 10.

According to Figure 2, the parameter c varies in
the range of �1:5 � Iext � 1:5 and the remaining
parameters are �xed to their prescribed values.

The third-order Jacobian matrix is utilized to
analyze the local stability of the equilibrium point of
the model as follows:

J =

0@ 1� v2 �1 1
P4 �P2P4 0
�P5 0 �P5

1A : (4)

Figure 1. The di�erent values of the �xed points of the
neuron model in Case A (Eq. (2)) as Iext varies. The blue,
black, and red lines correspond to absolute �xed point
values of v; w, and y. According to the results, increasing
the value of Iext leads to increasing both values of v; w but
decreasing the value of y.

Figure 2. The di�erent values of the �xed points of the
neuron model (Eq. (2)) as c varies. The blue, black, and
red lines correspond to absolute values of v; w; and y.
Increasing the value of Iext leads to increasing all values of
v; w, and y.

Figure 3. Eigenvalues of the equilibrium points of
variable v by changing Iext. The blue, black, and red
curves correspond to the real and imaginary parts of the
eigenvalues. The two Hopf bifurcation points, HB1 at
Iext = 0:226 and HB2 at Iext = 2:666 are labeled where
the black curve crosses the imaginary axis.

The cubic characteristic equation, the determinant of
J � �I3, is:

�3 +A2�2 +A1�+A0 = 0; (5)

where:

A2 = P2P4 + P5 + v2
e � 1;

A1 = P4 + P5 + P2P4P5 + (1� v2
e)(P5 + P2P4);

A0 = P4P5(1 + P2) + P2P4P5(v2
e � 1): (6)

Figure 3 shows a section of the plots of three eigen-
values for the characteristic equation (Eq. (5)) as Iext
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Figure 4. Eigenvalues of the equilibrium points of
variable v by changing the c. The blue, black, and red
curves correspond to the real and imaginary parts of the
eigenvalues. The two Hopf bifurcation points, namely
HB1 at c = �1:054 and HB2 at c = 1:344, are labeled
where the black curve crosses the imaginary axis.

varies in the range of [�10; 10], one of which is real and
the others are complex.

There are two Hopf bifurcations in Figure 3, in
which the real part of complex eigenvalues crosses the
imaginary axis at Iext = 0:226 and Iext = 2:666. The
frequencies at Hopf bifurcations are both equal to ! =
49247. Figure 4 shows the corresponding plots when
parameter c varies. Now, two Hopf bifurcations occur
at c = �1:054 and c = 1:344, with frequencies again
given by ! = 0:49247.

Criteria for detecting the occurrence of Hopf
bifurcation can be measured by substituting � = I!
into Eq. (5). Assuming the same real and imaginary
parts of the eigenvalues gives:

!2 =
A0

A2
= A1 > 0; (7)

which meets the su�cient Hopf bifurcation criteria:
A0 = A1A2. Since both c and Iext appear in the
expression for ve, it is not easy to obtain the curve
of Hopf bifurcations as a function of each of these two
parameters analytically. However, the locations of the
two Hopf bifurcations as well as their frequency values
have an underlying symmetry.

Figure 5 shows the plots of !2
r = A0

A2
(blue

points), !2
i = A1 (red points), and the Hopf bifurcation

condition HB = A1A2 �A0 when Iext increases. Note
that the symmetry of the Hopf Bifurcation points is
about Iext = 1:199, which is equal to the minimum
value of !2

i = 0:0048. This symmetry explains why
the frequencies at both Hopf bifurcation points are the
same and equal to ! = 0:49248. Moreover, the results
of Figures 3 and 4 are veri�ed by plotting bifurcation
transition diagrams of the maxima of v in each cycle

Figure 5. The behaviors of !2
r (blue), !2

i (red) and the
Hopf bifurcation condition HB (black) as Iext increases.

as Iext (Figure 6(a)) and c increase (Figure 6(b)). In
each plot, the two Hopf bifurcation points HB1 and
HB2 are labeled. In each case, the values of these four
points are consistent with those from the eigenvalue
plots of Figures 3 and 4.

3.2. Case B
By including the e�ects of electromagnetic induction
�(t) into the FH-R system (Eq. (2)), four-dimensional
nonlinear equations are obtained:

_v = v � v3

3
� w + y + Iext � k0v(�+ ��2) = F;

_w = P4(P1 + v � P2w) = G;

_y = P5(c� y � v) = H;

_�� k1v � k2� = K: (8)

Additional parameters in Eq. (8) and their prescribed
values are set to � = 0:1, � = 0:03, k0 = 0:01, k2 = 0:5.
The equilibrium state values are:

We =
1
P2

(P1 + Ve); Ye = c� Ve; �e =
k1

k2
Ve;
(9)

where Ve is the real solution to the modi�ed cubic
equation:�

1 + 3
�k0k2

1
k2

2

�
V 3 + 3

�
1
P2

+ k0�
�
V

+3
�
P1

P2
� c� Iext

�
= 0: (10)

When k0 = k1 = 0, Eq. (2) of Case A can be
recovered. The equilibrium points of Eq. (10) are
shown in Figure 7(a) and (b) by varying the parameters
Iext and c in turn. In both cases, the variation of �
is too insigni�cant between �0:572497242204E � 10 <
�e < 0:505714997709E�01 in Figure 7(a) and between
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Figure 6. (a) The bifurcation transition plots according to the changing Iext as a function of vmax. (b) The bifurcation
transition plots according to the changing c as a function of vmax.

Figure 7. The di�erent values of the �xed points of the neuron model (Eq. (10)) as: (a) Iext and (b) c varies. The blue,
black, red, and green lines correspond to absolute values of Ve, We, Ye, and �e.

�0:244182952138E�01 < �e < 0:222041836952E�01
in Figure 7(b). The range is extended for c in order to
capture the Hopf bifurcation values in Case B.

After performing the procedure for Case A, the
linear stability of the real equilibrium state is deter-
mined by computing the fourth-order Jacobian matrix
as follows:

J4 =0BB@1� V 2
e � k0(�+ ��2) �1 1 �2k0�Ve�e

P4 �P2P4 0 0
�P5 0 �P5 0
k1 0 0 �k2

1CCA :
(11)

The characteristic equation is now quartic det(J4 �
�I4) = 0 :

�4 +B3�3 +B2�2 +B1� +B0 = 0: (12)

If we de�ne:

C = 1� V 2
e � k0(�+ ��2); D = 2k0�Ve�e: (13)

then:

B3 = k2 + P5 + P2P4 � C;
B2 = P4 + P5 + k2P5 + k1D � (C � P2P4)(k2 + P5)

�CP2P4;

B1 = P4(k2 + P5) + P5(P2P4 + k2)

+Dk1(P2P4 + P5)� CP2P4(k2 + P5)

�k2P5(C � P2P4);

B0 = P2P4P5(1 + k2) + P2P4P5(k1D � k2C): (14)

To �nd the Hopf bifurcations, we substitute � = 1

into Eq. (12) and equate real and imaginary parts. This
gives 
2 a common positive root of 
4�B2
2 +B0 = 0
and 
2 = B1

B3
. When both conditions hold, we can omit


 to obtain the following:

B2
1 �B1B2B3 +B0B2

3 = 0: (15)

Again, the complexity of the coe�cients, with two
control parameters found in the �xed point expression,
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Figure 8. Comparison of the real eigenvalues for Case B
(blue) and Case A (red) as Iext increases.

renders an analytical solution extremely cumbersome.
Therefore, we rely on numerical integrations to deter-
mine the eigenvalues.

Figure 8 shows a comparison between the real
eigenvalues for Case B (blue) and the corresponding
real eigenvalues for Case A as Iext increases.

Except for additional curves susceptible to � vari-
ation, the curves are almost identical. The locations of
the Hopf bifurcations are shifted slightly to HB1 at
Iext = 0:23 and HB2 at Iext = 2:62. The frequencies
of bifurcating periodic limit cycles are both equal to

 = 0:49238. Figure 9 shows the corresponding plots
for the imaginary eigenvalues in both cases.

Figure 10 shows analogous plots when c increases.
The two Hopf bifurcation points are located at c =
�1:054 for HB1 and at c = 1:344 for HB2 with fre-
quencies 
 = 0:492476 for the chosen set of parameter
values, and the linear eigenvalues are �0:5, �0:0362,
and 0:2013� 0:2784i.

4. Bifurcation diagram analysis

Complete dynamical behavior of the system can be
investigated by exploring the impact of FH-R model
parameters. The bifurcation diagrams are derived for
two cases (A and B) and are analyzed.

4.1. Bifurcation of the FH-R model for Case
A (without magnetic induction)

First, the bifurcation of the FH-R system without
magnetic induction is done. By considering c as the
control parameter, other parameters are the same as
those in Eq. (2). The dynamical behavior in the
bifurcation diagram with respect to the parameter c
is shown in Figure 11(a). The parameter c varies
from [�0:6; 0] and the local maxima of v are plotted.
Di�erent behaviors such as limit cycle, period doubling,
and chaotic oscillation in this parameter range can be
observed. The density of chaotic regions also varies

Figure 9. Comparison of the imaginary parts of the
eigenvalues for Cases A (red) and B (blue) as Iext
increases.

while the parameter c increases. Both the period-
doubling route to chaos and period halving exit from
chaos can be detected.

Two di�erent colors in Figure 11(a) correspond
to the forward (blue plot) and backward (red plot)
continuations. To plot blue dots, the parameter c
increases from �0:6 to 0. While for plotting the
bifurcation diagram corresponding to red dots, the
parameter c decreases from 0 to �0:6. In both cases,
initial conditions are chosen from the end values of
the states at each step. The maximum peaks of
the variable v are chosen to be plotted in both red
and blue dots in each step. Di�erences between the
two bifurcation diagrams point to multi-stability of
the neuron model, which is con�rmed by plotting the
corresponding Lyapunov exponent diagrams in Fig-
ure 11(b). The Wolf algorithm is used for calculating
the Lyapunov exponent in diagrams [39].

4.2. Bifurcation of FH-R model for Case B
(with magnetic induction)

The second step is dedicated to Case B. In this case, the
neuron model is exposed to magnetic induction. The
control parameter for bifurcation is excitation current
Iext, while the other parameters are the same as those
in Eq. (8). The bifurcation diagram is presented in
Figure 12(a). The parameter Iext ranges between
[0:25; 0:75] for the analysis and the local maximum
of is plotted. The limit cycle, period doubling, and
chaotic oscillation with this parameter range can be
observed. Interestingly, the density of the chaotic
region varies while the parameter increases. The
property of Antimonotonicity can be clearly seen in
the diagram, which has not been observed in earlier
studies.

The same as those in Figure 11(a), two di�erent
colors are chosen to correspond to the forward (blue
plot) and backward (red plot) continuation. To plot
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Figure 10. (a) Both the real eigenvalues for Case B (blue) and Case A (red) as c increases. (b) Both the imaginary parts
of the eigenvalues for Cases A and B as c increases.

Figure 11. (a) Bifurcation of the FitzHugh-Rinzel
(FH-R) neuron model with c using forward and backward
continuation shown in blue and red plots, respectively. (b)
The corresponding maximum Lyapunov exponents for
forward and backward continuation.

blue dots, the parameter c increases from 0.25 to
0.75. However, for plotting the bifurcation diagram
corresponding to red dots, the parameter c decreases
from 0.75 to 0.25. In both cases, the initial conditions
are chosen from the end values of the states at each
step. The maximum peaks of the variable v are
selected to be plotted in each step in both red and
blue dots. Di�erences between the two bifurcation
diagrams point to the existence of the multi-stability
of the neuron model, which is con�rmed by plotting
the corresponding Lyapunov exponent in Figure 12(b).

Figure 12. (a) Bifurcation of the FitzHugh-Rinzel
(FH-R) neuron model with Iext using forward and
backward continuation shown in blue and red plots,
respectively. (b) The corresponding maximum Lyapunov
exponents for forward and backward continuation.

5. Spatiotemporal dynamics of the FH-R
neuron network

After investigating the local kinetics of the FH-R
model, it is now time we discussed the complex network
behavior of the FH-R model. In this respect, a network
is constructed by 110 � 110 FH-R neurons whose
local kinetics is governed by Eq. (1) for both Case A
and Case B with Neumann boundary conditions. To
explore the propagation of waves in the network, an
external stimulus (A sin(!t)) is exposed to the center
of the network. The initial states of the variables are
set to (0,0,0) for Case A and (0,0,0,0.5) for Case B. The
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FH-R neuron network of 110� 110 size can be de�ned
as follows:

Case A :

8>>>>>><>>>>>>:
_vij = vij � v3

ij
3 � wij + yij + Iext

+D(vi+1j + vi�1j + vij+1
+vij�1 � 4vij) + �(t) i�1 j�2

_wij = �(0:7 + vij � 0:8wij)
yij = �(c� yij � vij)

(16)

Case B :

8>>>>>>>>>><>>>>>>>>>>:

_vij = vij � v3
ij
3 � wij + yij + Iext�k0v(�+ ��2) +D(vi+1j

+vi�1j + vij+1 + vij�1 � 4vij)
+�(t) i�1 j�2

_wij = �(0:7 + vij � 0:8wij)
yij = �(c� yij � vij)
�ij = k1vij � k2�ij

(17)

where D shows the electrical coupling strength. �(t) =
A sin(!t) is the external stimuli that are applied to the
network when �i�1 = 1; �i�2 = 1 for i = �1 = 55; j =
�2 = 55, respectively. The parameter values in Eq. (16)
are Iext = 0:73; � = 0:01; � = 0:35; c = �0:55 and
� = 0:1; � = 0:03; k0 = 0:1; k1 = 0:01; k2 = 0:5 are the
additional parameters required for (20).

The spatiotemporal behavior of the �rst variable
of the model is explored, and the �nal patterns at
t = 3000 are shown. The entire discussion is �rst
subdivided into Case A and Case B and in each case,

we have discussed the impact of the di�usion coe�cient
and stimuli parameter (frequency/amplitude).

5.1. Case A (without magnetic induction)
The spatiotemporal pattern of the neuron model with-
out considering the e�ect of magnetic induction is
investigated in three steps. At �rst, the e�ect of
coupling strength (D) is explored when the amplitude
and frequency of the external stimuli are set to A =
! = 1. Figure 13 exhibits wave propagation in the
network in the case of �ve di�erent coupling strength
degrees.

According to the results in Figure 13, it can
be concluded that increasing the coupling strength
leads to the emergence of highly ordered patterns.
For instance, the small value of the coupling strength
in Figure 13(a) ends with irregular patterns. Upon
further increase in the coupling strength (Figure 13(b)
(c), and (d)), some seeds in the waves appeared in the
network, which were getting stronger. Finally, when
the coupling strength was set to D = 1, strong regular
waves formed in the network.

In the second step, the frequency e�ect of the
stimuli on the emergence of the network's spatiotempo-
ral pattern is investigated. Accordingly, the frequency
of the external stimuli increases smoothly and the
spatiotemporal pattern of the network is plotted in
Figure 14.

Figure 14 shows the e�ect of the frequency of
external stimuli on wave propagation in the network.

Figure 13. The spatiotemporal behavior of the network for �ve di�erent coupling strengths: (a) D = 0:1, (b) D = 0:3, (c)
D = 0:5, (d) D = 0:8, and (e) D = 1. Wave propagation in the network with small coupling strength is more irregular than
the network with larger coupling strength.
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Figure 14. The spatiotemporal behavior of the network (Case A) for six di�erent frequencies: (a) ! = 0:00001, (b)
! = 0:0001, (c) ! = 0:001, (d) ! = 0:01, (e) ! = 0:1, and (f) ! = 1. For smaller frequencies, more wave seeds are
propagating irregularly. However, increasing the external stimuli's frequencies leads to lower wave seeds with more regular
wave propagation in the network.

Figure 15. The spatiotemporal behavior of the network for six di�erent amplitudes (a) A = 0:0001, (b) A = 0:001, (c)
A = 0:01, (d) A = 0:1, (e) A = 1, and (f) A = 5. The amplitude of the external stimuli does not have a concrete e�ect on
wave propagation on the network.

It can be implied that the wave seeds in the network
under stimuli with low frequency propagate irregularly.
However, if the frequency exceeds a speci�c threshold
(! = 0:1), the wave propagation turns periodic on the
network.

The last step concerns the amplitude of the
external stimuli as a varying parameter to study the
spatiotemporal pattern of the network. The overall
behavior of the network is examined based on six
di�erent amplitude values in Figure 15.
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Figure 16. The spatiotemporal behavior of the network (Case B) for six di�erent coupling strengths: (a) D = 0:1, (b)
D = 0:3, (c) D = 0:5, (d) D = 0:7, (e) D = 0:9, and (f) D = 1. The larger the coupling strength is, the more regular the
waves propagate in the network.

Changing the amplitude of external stimuli can
a�ect the behavior of the network. Figure 15 shows
the �nal patterns of the network at t = 3000 according
to six di�erent amplitude values. The irregular pattern
of wave propagation can be seen in the network at an
amplitude value below A = 1. However, the network
would switch to regular and periodic modes at a larger
amplitude value. A comparison of results of the net-
work spatiotemporal pattern based on the three factors
revealed that wave propagation in the network was
almost a�ected by coupling strength and the frequency
of external stimuli rather than the amplitude.

5.2. Case B (with magnetic induction)
Similar to the last section, the coupling strength and
parameters of the external stimuli are considered as the
main e�ective factors in the spatiotemporal behavior
of the network. According to the results shown in
Figure 15, the amplitude of the network cannot be
considered an e�ective parameter for wave propagation.
In this respect, the impact of coupling strength and
frequency of the external stimuli on the emergence and
propagation of seed waves was investigated. Accord-
ingly, this section can be divided into two steps: the
�rst devoted to the impact of coupling strength and the
second to investigating the e�ect of the frequency of the
stimuli. Figure 16 shows the spatiotemporal patterns
of six di�erent coupling strengths.

Similar to Case A, increase in the coupling
strength of the network in Case B leads to highly
ordered patterns. Comparing the results of Figure 16

with Figure 13 reveals that the e�ect of the coupling
strength on wave propagation in the network of Case B
is greater than that in Case A.

In the second step, the spatiotemporal network
patterns for six di�erent frequencies of the external
stimuli are shown in Figure 17.

For ! = 0:0001 in Figure 17(a), periodic waves
propagate in the network and the spatiotemporal pat-
tern of the network is regular. Increasing the frequency
in the range of 0:0001 < ! < 0:1 disturbs the network
regularity and leads to irregular wave propagation.
However, the network returns to the periodic wave
propagation mode in the case of ! = 0:1. Further
increases in the frequency of the stimuli would retrieve
the irregular wave propagation in the network again.
Therefore, the overall conclusion is that in contrast
with the result of Case A, increasing the frequency of
the external stimuli has an inverse e�ect on propagation
of regular waves on the network.

6. Conclusion

This paper compared the dynamical behavior of the
modi�ed FitzHugh-Rinzel (FH-R) neuron model ex-
posed to the magnetic �eld (Case B) with that of the
FH-R model (Case A). To this end, the stability of
the equilibrium points was studied in both models.
Appropriate criteria for detecting Hopf bifurcation
were evaluated. Exploring the bifurcation diagram
and Lyapunov exponent diagrams revealed that both
Case A and Case B categorized the systems with
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Figure 17. The spatiotemporal behavior of the network (Case B) for six di�erent frequencies: (a) ! = 0:0001, (b)
! = 0:001, (c) ! = 0:01, (d) ! = 0:1, (e) ! = 1, and (f) ! = 10. The frequency of the external stimuli in Case B has an
inverse e�ect on producing regular waves on the network. The larger frequencies lead to irregular wave propagation in the
network.

multi-stability. Also, the dynamical behavior of the
network consisting of the 110�110 FH-R neuron model
was investigated. The e�ects of coupling strength,
frequency, and amplitude of external stimuli on the
emergence and propagation of the waves in the network
were reported in neuron models of Cases A and B. The
results demonstrated that increasing coupling strength
led to a more regular wave pattern. However, the
e�ect of coupling strength on the emergence of the
regular wave patterns in Case B was more e�cient
than that in Case A. The frequency of the external
stimuli e�ect on the spatiotemporal behavior of the
network was di�erent in Case A and Case B. In Case
A, increasing the frequency of external stimuli led to
more regular wave propagation in the network. In
contrast, the e�ect of the frequency of external stimuli
in Case B produced more irregular waves in the network
at larger frequencies. Moreover, the amplitude of
external stimuli did not have any signi�cant e�ect on
the network's wave propagation in both cases.
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