Study of thermally developed flow of viscous fluid over a porous stretching surface contacting gyrotatic microorganisms using buongiorno model

Document Type : Article


1 - Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan. - Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan 60000, Pakistan.

2 Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan 60000, Pakistan



Recent trend in advanced nanotechnology has developed the thermal consequences of nanoparticles due to increasing significance in various engineering and thermal extrusion systems. In this continuation, two-dimensional flow of viscous nanoliquid in the presence of gyrotactic micro-organisms encountered by a porous stretched surface is addressed numerically. The novel aspects of Brownian diffusion and thermophoresis are studied by using Buongiorno model. The thermal radiation impact is imposed in the energy equation. A set of pertinent transformations has been suggested to transform the governing non-linear partial differential equations into system of non-linear ordinary differential equations. A famous numerical method, finite difference technique, is engaged to acquire the numerical solution of modeled dimensionless equations. The flow analysis for effects of numerous prominent parameters on velocity, temperature, concentration and motile micro-organisms profiles is presented graphically. In the presence of thermal radiation, velocity profiles detract with augment of bioconvection Rayleigh number and buoyancy ratio parameter, while opposite trend is observed for boosting the Grashoff number. The porous medium as well as the radiation enhance the fluid temperature.


References         1. Choi, S.U.S. Enhancing thermal conductivity of uids         with nanoparticles", ASME Pub. Fed., 231, pp. 99{106         (1995).         2. Buongiorno, J. Convective transport in nanouids",         J. Heat Transfer, 128, pp. 240{250 (2006).         3. Khan, M., Irfan, M., and Khan, W.A. Impact of         heat source/sink on radiative heat transfer to Maxwell         nanouid subject to revised mass ux condition",         Results Phys., 9, pp. 851{857 (2018).         4. Mohebbi, R., Izadi, M., and Chamkha, A.J.         Heat source location and natural convection in         a C-shaped enclosure saturated by a nanouid",         Phys. Fluids, 29(12), 1222009(1{13) (2017). DOI:         10.1063/1.4993866         5. Mashaei, P.R., Hosseinalipour, S.M., and Bahiraei,         M. Numerical investigation of nanouid forced convection         in channels with discrete heat sources",         J. Appl. Math, 2012, 259284(1{18) (2012). DOI:         10.1155/2012/259284         6. Kumam P., Shah, Z., Dawar, A., et al. Entropy         generation in MHD radiative ow of CNTs         Casson nanouid in rotating channels with heat         source/sink", Math Probl. Eng., 9158093(1{14) (2019).         DOI: 10.1155/2019/9158093         7. Hassan, M., Marin, M., Alsharif, A., et al. Convective         heat transfer ow of nanouid in a porous medium over         wavy surface", Phys. Lett. A, 382(38), pp. 2749{2753         (2018).         8. Guha, A. and Nayek, S. Thermo-uid-dynamics of         natural convection around a heated vertical plate         with a critical assessment of the standard similarity         theory", Phys. Fluids, 29(10), 103607(1{17) (2017).         DOI: 10.1063/1.4990279         9. Sheikholeslami, M., Jafaryar, M., Said, Z., et al. Modi         _cation for helical turbulator to augment heat transfer         behavior of nanomaterial via numerical approach",         Appl. Therm. Eng., 182, 115935(1{18) (2020). DOI:         10.1016/j.applthermaleng.2020.115935         10. Sheikholeslami, M., Farshad, S.A., Shafee, A., et al.         Performance of solar collector with turbulator involving         nanomaterial turbulent regime", Renew. Energy,         163, pp. 1222{1237 (2020).         11. Hakeem, A.K.A., Indumathi, N., Ganga, B., et al.         Comparison of disparate solid volume fraction ratio         of hybrid nanouids ow over a permeable at surface         with aligned magnetic _eld and Marangoni convection",         Sci. Iran., 27(6), pp. 3367{3380 (2020). DOI:         10.24200/SCI.2020.51681.2312         12. Turkyilmazoglu, M. Single phase nanouids in uid         mechanics and their hydrodynamic linear stability         analysis", Comput. Meth. Prog. Bio., 187, 105171(1{         39) (2020). DOI: 10.1016/j.cmpb.2019.105171         13. Sadeghi, V., Baheri, S., and Arsalani, N. An experimental         investigation of the e_ect of using non-         Newtonian nanouid- graphene oxide /aqueous solution         of sodium carboxymethyl cellulose- on the performance         of direct absorption solar collector", Sci. Iran.         (2020). (In Press)         DOI: 10.24200/SCI.2020.54994.4024         14. Sheikholeslami, M., Rizwan-ul Haq, Ahmad, S., et al.         Heat transfer simulation of heat storage unit with         nanoparticles and _ns through a heat exchanger", Int.         J. Heat Mass Transf., 135, pp. 470{478 (2019).         15. Sheikholeslami, M., Behnoush, R., Milad, D., et al.         Application of nano-refrigerant for boiling heat transfer         enhancement employing an experimental study",         Int. J. Heat Mass Transf., 141, pp. 974{980 (2019).         16. Ahmad, S., Ashraf, M., and Ali, K. Nanouid         ow comprising gyrotactic microorganisms through a         porous media", JAFM, 13(5), pp. 1539{1549 (2020).         17. Khan, S.A. and Siddiqui, M.A. Numerical studies on         heat and uid ow of nanouid in a partially heated         vertical annulus", Heat Transfer, 49(3), pp. 1458{1490         (2020).         18. Irfan, M., Farooq, M.A., and Iqra, T. A new computational         technique design for EMHD nanouid ow         over a variable thickness surface with variable liquid         characteristics", Front. Phys., 8(66), 66(1{14) (2020).         DOI: 10.3389/fphy.2020.00066         19. Turkyilmazoglu, M. Multiple analytic solutions of         heat and mass transfer of magnetohydrodynamic slip         Sh. Akhter and M. Ashraf/Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1926{1938 1937         ow for two types of viscoelastic uids over a stretching         surface", J. Heat Transfer, 134(7), 071701(1{9)         (2012). DOI: 10.1115/1.4006165         20. Khan, Y. Magnetohydrodynamic ow of linear viscoelastic         uid model above a shrinking/stretching sheet:         A series solution", Sci. Iran., 24(5), pp. 2466{2472         (2017).         21. Kumar, R., Sood, S., Sheikholeslami, M., et al.         Nonlinear thermal radiation and cubic autocatalysis         chemical reaction e_ects on the ow of stretched         nanouid under rotational oscillations", J. Colloid         Interface Sci., 505, pp. 253{265 (2017).         22. Irfan, M., Farooq, M.A., and Iqra, T. Magnetohydrodynamic         free stream and heat transfer of nanouid         ow over an exponentially radiating stretching sheet         with variable uid properties", Front. Phys., 7(186),         186(1-11) (2019). DOI: 10.3389/fphy.2019.00186         23. Akhter, S., Ashraf, M., and Ali, K. MHD ow and         heat transfer analysis of micropolar uid through a         porous medium between two stretchable disks using         quasi-linearization method", Iran. J. Chem. Chem.         Eng., 36(4), pp. 155{169 (2017).         24. Akhter, S. and Ashraf, M. Numerical study of         ow and heat transfer in a porous medium between         two stretchable disks using Quasi-linearization         method", Therm. Sci., 25(2), pp. 989{1000 (2021).         DOI: 10.2298/TSCI180801163A         25. Turkyilmazoglu, M. Stretching/shrinking longitudinal         _ns of rectangular pro_le and heat transfer",         Energy Convers. Manag., 91, pp. 199{203 (2015).         26. Turkyilmazoglu, M. Latitudinally deforming rotating         sphere", Appl. Math. Model., 71, pp. 1{11 (2019).         27. Farooq, M., Salahuddin, A., Razzaq, M., et al.         Computational analysis for unsteady and steady magnetohydrodynamic         radiating nano uid ow past a         slippery stretching sheet immersed in a permeable         medium", Sci. Iran., 27(6), pp. 3454{3466 (2020).         DOI: 10.24200/SCI.2020.53055.3039         28. Kuznetsov, A.V. The onset of nanouid bioconvection         in a suspension containing both nanoparticles and         gyrotactic microorganisms", Int. Commun. Heat Mass         Transf., 37(10), pp. 1421{1425 (2010).         29. Kuznetsov, A.V. Nanouid bioconvection in waterbased         suspensions containing nanoparticles and         oxytactic microorganism: Oscillatory instability",         Nanoscale Res. Lett., 6, 100(1{13) (2011). DOI:         10.1186/1556-276X-6-100         30. Khan, W.A., Rashad, A.M., Abdou, M.M.M., et al.         Natural bioconvection ow of a nanouid containing         gyrotactic microorganisms about a truncated cone",         European J. Mech. - B/Fluids, 75, pp. 133{142 (2019).         31. Hayat, T., Waqas, M., Shehzad, S.A., et al. Mixed         convection ow of viscoelastic nanouid by a cylinder         with variable thermal conductivity and heat         source/sink", Int. J. Numer. Method H., 26(1), pp.         214{234 (2016).         32. Mehryan, S.A.M., Kashkooli, F.M., Soltani, M., et al.         Fluid ow and heat transfer analysis of a nanouid         containing motile gyrotactic micro-organisms passing         a nonlinear stretching vertical sheet in the presence         of a non-uniform, magnetic _eld numerical approach",         PLOS, 11(6), e0157598(1{32) (2016). DOI:         10.1371/journal.pone.0157598         33. Akbar, N.S. Bioconvection peristaltic ow in an         asymmetric channel _lled by nanouid containing gyrotactic         microorganism", Int. J. Numer. Method H.,         25(2), pp. 214{224 (2015).         34. Atif, S.M., Hussain, S., and Sagheer, M. Magnetohydrodynamic         strati_ed bioconvective ow of micropolar         nano uid due to gyrotactic microorganisms",         AIP Adv., 9(2), 025208(1{17) (2019). DOI:         10.1063/1.5085742         35. Zuhra, S., Khan, N.S., Shah, S., et al. Simulation         of bioconvection in the suspension of second grade         nanouid containing nanoparticles and gyrotactic microorganisms",         AIP Adv., 10(8), 105210(1{24) (2018).         DOI: 10.1063/1.5054679         36. Atif, S., Hussain, S., and Sagheer, M. E_ect of thermal         radiation on MHD micropolar Carreau nanouid         with viscous dissipation, Joule heating, and internal         heating", Sci. Iran., 26(6), pp. 3875{3888 (2019).         37. Nawaz, M. Numerical study of hydrothermal characteristics         in nano uid using KKL model with Brownian         motion", Sci. Iran., 26(3), pp. 1931{1943 (2019).         38. Ferdows, M., Zaimi, K., Rashad, A.M., et         al. MHD bioconvection ow and heat transfer         of nanouid through an exponentially stretchable         sheet", Symmetry, 12(5), 692(1{18) (2020). DOI:         10.3390/sym12050692         39. Shakiba, A. and Rahimi, A.B. Role of movement of         the walls with time-dependent velocity on ow and         mixed convection in vertical cylindrical annulus with         suction/injection", Sci. Iran., 21932(1{24) (2020). (In         Press) DOI: 10.24200/SCI.2020.54784.3917         40. Ahmed, A., Khan, M., Ahmed, J., et al. Mixed convection         in unsteady stagnation point ow of Maxwell         uid subject to modi_ed Fourier's law", Arab. J. Sci.         Eng., 45, pp. 9439{9447 (2020).         41. Aman, F., Ha_zah, W.N., Khazim, W.M., et al.         Mixed convection ow of a nanouid containing         gyrotactic microorganisms over a stretching/shrinking         sheet in the presence of magnetic _eld", IOP Conf. Series:         Journal of Physics: Conf. Series, 890, 012027(1{         8) (2017). DOI: 10.1088/1742-6596/890/1/012027         42. Ahmad, S., Ashraf, M., and Ali, K. Heat and         mass transfer ow of gyrotactic microorganisms and         nanoparticles through a porous medium", Int. J. Heat         and Technol., 32(2), pp. 395{402 (2020).         43. Sheikholeslami, M. and Rokni, H.B. E_ect of melting         heat transfer on nanouid ow in the presence of a         1938 Sh. Akhter and M. Ashraf/Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1926{1938         magnetic _eld using the Buongiorno Model", Chin. J.         Phys., 55(4), pp. 1115{1126 (2017).         44. Wahid, N.S., Ha_dzuddin, M.E.H., Ari_n, N.M., et al.         Magnetohydrodynamic (MHD) slip Darcy ow of viscoelastic         uid over a stretching sheet and heat transfer         with thermal radiation and viscous dissipation", CFD         Lett., 12(1), pp. 1{12 (2020).         45. Wahid, N.S., Ha_dzuddin, M.E.H., Ari_n, N.M., et         al. Exact analytical solution for MHD ow and heat         transfer of Je_rey uid over a stretching sheet with         viscous dissipation", JMEST, 6(12), pp. 49{53 (2019).         46. Wahid, N.S., Ari_n, N.M., Turkyilmazoglu, M., et al.         MHD Hybrid Cu-Al2O3/ Water nanouid ow with         thermal radiation and partial slip past a permeable         stretching surface: analytical solution", J. Nano R.,         64, pp. 75{91 (2020).         47. Turkyilmazoglu, M. The analytical solution of mixed         convection heat transfer and uid ow of a MHD         viscoelastic uid over a permeable stretching surface",         Int. J. Mech. Sci., 77, pp. 263{268 (2013).         48. Khan, S.U., Shehzad, S.A., Rauf, A., et al. Mixed         convection ow of couple stress nanouid over oscillatory         stretching sheet with heat absorption/generation         e_ects", Results Phys., 8, pp. 1223{1231 (2018).         49. Lund, L.A., Omar, Z., Khan, I., et al. Convective         e_ect on magnetohydrodynamic (MHD) stagnation         point ow of Casson uid overa vertical exponentially         stretching/shrinking surface: triple solutions",         Symmetry, 12(8), 1238(1{16) (2020). DOI:         10.3390/sym12081238         50. Mustafa, I., Abbas, Z., Arif, A., et al. Stability         analysis for multiple solutions of boundary layer         ow towards a shrinking sheet: analytical solution         by using least square method", Phys. A Stat.         Mech. Its Appl., 540, 123028(1{12) (2020). DOI:         10.1016/j.physa.2019.123028