References
[1] Boccaletti, S., Kurths, J., Osipov, G., et al., "The synchronization of chaotic systems," Phys. Rep., 366(1-2), pp. 1-1
References 1. Boccaletti, S., Kurths, J., Osipov, G., et al. The synchronization of chaotic systems", Phys. Rep., 366(1{ 2), pp. 1{101 (2002). 2. Majhi, S. and Ghosh, D. Synchronization of moving oscillators in three dimensional space", Chaos, 27(5), p. 053115 (2017). 3. Pecora, L.M. and Carroll, T.L. Synchronization of chaotic systems", Chaos, 25(9), p. 097611 (2015). 4. Zhang, X., Boccaletti, S., Guan, S., et al. Explosive synchronization in adaptive and multilayer networks", Phys. Rev. Lett., 114(3), p. 038701 (2015). 5. Panaggio, M.J. and Abrams, D. M. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators", Nonlinearity, 28(3), p. R67 (2015). 6. Abrams, D.M., Strogatz, S.H., et al. Chimera states for coupled oscillators", Phys. Rev. Lett., 93(17), p. 174102 (2004). 7. Parastesh, F., Jafari, S., Azarnoush, H., et al. Chimeras", Phys. Rep., (2020) (In Press). 8. Kuramoto, Y. and Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators", Nonl. Phen. Compl. Syst., 5(4), pp. 380{ 385 (2002). Z. Wang et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1661{1668 1667 9. Majhi, S., Perc, M., and Ghosh, D. Chimera states in a multilayer network of coupled and uncoupled neurons", Chaos, 27(7), p. 073109 (2017). 10. Omelchenko, I., Provata, A., Hizanidis, J., et al. Robustness of chimera states for coupled FitzHugh- Nagumo oscillators", Phys. Rev. E., 91(2), p. 022917 (2015). 11. Wei, Z., Parastesh, F., Azarnoush, et al. Nonstationary chimeras in a neuronal network", EPL (Europhys. Lett.), 123(4), p. 48003 (2018). 12. Chouzouris, T., Omelchenko, I., Zakharova, et al. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity", Chaos, 28(4), p. 045112 (2018). 13. Loos, S.A., Claussen, J.C., Schvll, E., et al. Chimera patterns under the impact of noise", Phys. Rev. E., 93(1), p. 012209 (2016). 14. Dudkowski, D., Maistrenko, Y., and Kapitaniak, T. Occurrence and stability of chimera states in coupled externally excited oscillators", Chaos, 26(11), p. 116306 (2016). 15. Parastesh, F., Chen, C.-Y., Azarnoush, H., et al. Synchronization patterns in a blinking multilayer neuronal network", Eur. Phys. J. Spec. Top., 228(11), pp. 2465{2474 (2019). 16. Wang, Z., Baruni, S., Parastesh, et al. Chimeras in an adaptive neuronal network with burst-timingdependent plasticity", Neurocomputing, 406, pp. 117{ 126 (2020). 17. Parastesh, F., Jafari, S., Azarnoush, H., et al. Chimera in a network of memristor-based Hop_eld neural network", Eur. Phys. J. Spec. Top., 228(10), pp. 2023{2033 (2019). 18. Khaleghi, L., Panahi, S., Chowdhury, S.N., et al. Chimera states in a ring of map-based neurons", Physica A., 536, p. 122596 (2019). 19. Hagerstrom, A.M., Murphy, T.E., Roy, R., et al. Experimental observation of chimeras in coupled-map lattices", Nature Phys., 8(9), p. 658 (2012). 20. Nkomo, S., Tinsley, M.R., and Showalter, K., Chimera states in populations of nonlocally coupled chemical oscillators", Phys. Rev. Lett., 110(24), p. 244102 (2013). 21. Awal, N.M., Bullara, D., and Epstein, I.R. The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators", Chaos, 29(1), p. 013131 (2019). 22. Dudkowski, D., Grabski, J., Wojewoda, J., et al. Experimental multistable states for small network of coupled pendula", Sci. Rep., 6, p. 29833 (2016). 23. Dudkowski, D., Czo lczy_nski, K., and Kapitaniak, T. Traveling chimera states for coupled pendula", Nonlinear Dyn., 95(3), pp. 1859{1866 (2019). 24. Carvalho, P.R. and Savi, M.A. Synchronization and chimera state in a mechanical system", Nonlinear Dyn., pp. 1{19 (2020). 25. Gambuzza, L.V., Buscarino, A., Chessari, S., et al. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators", Phys. Rev. E., 90(3), p. 032905 (2014). 26. Majhi, S., Bera, B.K., Ghosh, D., et al. Chimera states in neuronal networks: A review", Phys. Life Rev., 28, pp. 100{121 (2019). 27. Bao, H., Zhang, Y., Liu, W., et al. Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera", Nonlinear Dyn., 100, pp. 937{950 (2020). 28. Andreev, A.V., Ivanchenko, M.V., Pisarchik, A.N., et al. Stimulus classi_cation using chimera-like states in a spiking neural network", Chaos, Solitons & Fractals, 139, p. 110061 (2020). 29. Wang, S., He, S., Rajagopal, K., et al. Route to hyperchaos and chimera states in a network of modi_ed Hindmarsh-Rose neuron model with electromagnetic ux and external excitation", Euro. Phys. J. Spec. Top., 229, pp. 929{942 (2020). 30. Ruzzene, G., Omelchenko, I., Sawicki, J., et al. Remote pacemaker control of chimera states in multilayer networks of neurons", Phys. Rev. E., 102(5), p. 052216 (2020). 31. Bansal, K., Garcia, J.O., Tompson, S.H., et al. Cognitive chimera states in human brain networks", Sci. Adv., 5(4), p. eaau8535 (2019). 32. Bera, B.K. and Ghosh, D. Chimera states in purely local delay-coupled oscillators", Phys. Rev. E., 93(5), p. 052223 (2016). 33. Yeldesbay, A., Pikovsky, A., and Rosenblum, M. Chimeralike states in an ensemble of globally coupled oscillators", Phys. Rev. Lett., 112(14), p. 144103 (2014). 34. Clerc, M., Coulibaly, S., Ferr_e, M., et al. Chimeratype states induced by local coupling", Phys. Rev. E., 93(5), p. 052204 (2016). 35. Schmidt, L. and Krischer, K. Clustering as a prerequisite for chimera states in globally coupled systems", Phys. Rev. Lett., 114(3), p. 034101 (2015). 36. Buscarino, A., Frasca, M., Gambuzza, L.V., et al. Chimera states in time-varying complex networks", Phys. Rev. E., 91(2), p. 022817 (2015). 37. Kasatkin, D., Yanchuk, S., Schvll, E., et al. Selforganized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings", Phys. Rev. E., 96(6), p. 062211 (2017). 38. Kasatkin, D. and Nekorkin, V. Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings", Chaos, 28(9), p. 093115 (2018). 1668 Z. Wang et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1661{1668 39. Huo, S., Tian, C., Kang, L., et al. Chimera states of neuron networks with adaptive coupling", Nonlinear Dyn., 96(1), pp. 75{86 (2019). 40. Bera, B.K., Ghosh, D., and Banerjee, T. Imperfect traveling chimera states induced by local synaptic gradient coupling", Phys. Rev. E., 94(1), p. 012215 (2016). 41. Omelchenko, I., Omel'chenko, E., Hvvel, P., et al. When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states", Phys. Rev. Lett., 110(22), p. 224101 (2013). 42. Kundu, S., Bera, B.K., Ghosh, D., et al. Chimera patterns in three-dimensional locally coupled systems", Phys. Rev. E., 99(2), p. 022204 (2019). 43. Pecora, L.M. and Carroll, T.L. Master stability functions for synchronized coupled systems", Phys. Rev. Lett., 80(10), p. 2109 (1998). 01 (2002).
[2] Majhi, S., and Ghosh, D., "Synchronization of moving oscillators in three dimensional space," Chaos, 27(5), p. 053115 (2017).
[3] Pecora, L. M., and Carroll, T. L., "Synchronization of chaotic systems," Chaos, 25(9), p. 097611 (2015).
[4] Zhang, X., Boccaletti, S., Guan, S., et al. , "Explosive synchronization in adaptive and multilayer networks," Phys. Rev. Lett., 114(3), p. 038701 (2015).
[5] Panaggio, M. J., and Abrams, D. M., "Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators," Nonlinearity, 28(3), p. R67 (2015).
[6] Abrams, D. M., and Strogatz, S. H., et al., "Chimera states for coupled oscillators," Phys. Rev. Lett., 93(17), p. 174102 (2004).
[7] Parastesh, F., Jafari, S., Azarnoush, H., et al., "Chimeras," Phys. Rep., p. In Press (2020).
[8] Kuramoto, Y., and Battogtokh, D., "Coexistence of coherence and incoherence in nonlocally coupled phase oscillators," Nonl. Phen. Compl. Syst., 5(4), pp. 380-385 (2002).
[9] Majhi, S., Perc, M., and Ghosh, D., "Chimera states in a multilayer network of coupled and uncoupled neurons," Chaos, 27(7), p. 073109 (2017).
[10] Omelchenko, I., Provata, A., Hizanidis, J., et al., "Robustness of chimera states for coupled FitzHugh-Nagumo oscillators," Phys. Rev. E, 91(2), p. 022917 (2015).
[11] Wei, Z., Parastesh, F., Azarnoush, et al., "Nonstationary chimeras in a neuronal network," EPL (Europhys. Lett.), 123(4), p. 48003 (2018).
[12] Chouzouris, T., Omelchenko, I., Zakharova, et al., "Chimera states in brain networks: Empirical neural vs. modular fractal connectivity," Chaos, 28(4), p. 045112 (2018).
[13] Loos, S. A., Claussen, J. C., Schöll, E., et al., "Chimera patterns under the impact of noise," Phys. Rev. E, 93(1), p. 012209 (2016).
[14] Dudkowski, D., Maistrenko, Y., and Kapitaniak, T., "Occurrence and stability of chimera states in coupled externally excited oscillators," Chaos, 26(11), p. 116306 (2016).
[15] Parastesh, F., Chen, C.-Y., Azarnoush, H., et al., "Synchronization patterns in a blinking multilayer neuronal network," Eur. Phys. J. Spec. Top., 228(11), pp. 2465-2474 (2019).
[16] Wang, Z., Baruni, S., Parastesh, et al., "Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity," Neurocomputing, 406, pp. 117-126 (2020).
[17] Parastesh, F., Jafari, S., Azarnoush, H., et al., "Chimera in a network of memristor-based Hopfield neural network," Eur. Phys. J. Spec. Top., 228(10), pp. 2023-2033 (2019).
[18] Khaleghi, L., Panahi, S., Chowdhury, S. N., et al., "Chimera states in a ring of map-based neurons," Physica A, 536, p. 122596 (2019).
[19] Hagerstrom, A. M., Murphy, T. E., Roy, R., et al., "Experimental observation of chimeras in coupled-map lattices," Nature Phys., 8(9), p. 658 (2012).
[20] Nkomo, S., Tinsley, M. R., and Showalter, K., "Chimera states in populations of nonlocally coupled chemical oscillators," Phys. Rev. Lett., 110(24), p. 244102 (2013).
[21] Awal, N. M., Bullara, D., and Epstein, I. R., "The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators," Chaos, 29(1), p. 013131 (2019).
[22] Dudkowski, D., Grabski, J., Wojewoda, J., et al., "Experimental multistable states for small network of coupled pendula," Sci. Rep., 6, p. 29833 (2016).
[23] Dudkowski, D., Czołczyński, K., and Kapitaniak, T., "Traveling chimera states for coupled pendula," Nonlinear Dyn., 95(3), pp. 1859-1866 (2019).
[24] Carvalho, P. R., and Savi, M. A., "Synchronization and chimera state in a mechanical system," Nonlinear Dyn., pp. 1-19 (2020).
[25] Gambuzza, L. V., Buscarino, A., Chessari, S., et al., "Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators," Phys. Rev. E, 90(3), p. 032905 (2014).
[26] Majhi, S., Bera, B. K., Ghosh, D., et al., "Chimera states in neuronal networks: A review," Phys. Life Rev., 28, pp. 100-121 (2019).
[27] Bao, H., Zhang, Y., Liu, W., et al., "Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera," Nonlinear Dyn., 100, pp. 937–950 (2020).
[28] Andreev, A. V., Ivanchenko, M. V., Pisarchik, A. N., et al., "Stimulus classification using chimera-like states in a spiking neural network," Chaos, Solitons & Fractals, 139, p. 110061 (2020).
[29] Wang, S., He, S., Rajagopal, K., et al., "Route to hyperchaos and chimera states in a network of modified Hindmarsh-Rose neuron model with electromagnetic flux and external excitation," Euro. Phys. J. Spec. Top., 229, pp. 929-942 (2020).
[30] Ruzzene, G., Omelchenko, I., Sawicki, J., et al., "Remote pacemaker control of chimera states in multilayer networks of neurons," Phys. Rev. E, 102(5), p. 052216 (2020).
[31] Bansal, K., Garcia, J. O., Tompson, S. H., et al., "Cognitive chimera states in human brain networks," Sci. Adv., 5(4), p. eaau8535 (2019).
[32] Bera, B. K., and Ghosh, D., "Chimera states in purely local delay-coupled oscillators," Phys. Rev. E, 93(5), p. 052223 (2016).
[33] Yeldesbay, A., Pikovsky, A., and Rosenblum, M., "Chimeralike states in an ensemble of globally coupled oscillators," Phys. Rev. Lett., 112(14), p. 144103 (2014).
[34] Clerc, M., Coulibaly, S., Ferré, M., et al., "Chimera-type states induced by local coupling," Phys. Rev. E, 93(5), p. 052204 (2016).
[35] Schmidt, L., and Krischer, K., "Clustering as a prerequisite for chimera states in globally coupled systems," Phys. Rev. Lett., 114(3), p. 034101 (2015).
[36] Buscarino, A., Frasca, M., Gambuzza, L. V., et al., "Chimera states in time-varying complex networks," Phys. Rev. E, 91(2), p. 022817 (2015).
[37] Kasatkin, D., Yanchuk, S., Schöll, E.,et al., "Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings," Phys. Rev. E, 96(6), p. 062211 (2017).
[38] Kasatkin, D., and Nekorkin, V., "Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings," Chaos, 28(9), p. 093115 (2018).
[39] Huo, S., Tian, C., Kang, L., et al., "Chimera states of neuron networks with adaptive coupling," Nonlinear Dyn., 96(1), pp. 75-86 (2019).
[40] Bera, B. K., Ghosh, D., and Banerjee, T., "Imperfect traveling chimera states induced by local synaptic gradient coupling," Phys. Rev. E, 94(1), p. 012215 (2016).
[41] Omelchenko, I., Omel’chenko, E., Hövel, P., et al., "When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states," Phys. Rev. Lett., 110(22), p. 224101 (2013).
[42] Kundu, S., Bera, B. K., Ghosh, D., et al., "Chimera patterns in three-dimensional locally coupled systems," Phys. Rev. E, 99(2), p. 022204 (2019).
[43] Pecora, L. M., and Carroll, T. L., "Master stability functions for synchronized coupled systems," Phys. Rev. Lett., 80(10), p. 2109 (1998).