References:
[1] Boccaletti S, Kurths J, Osipov G, et al. The synchronization of chaotic systems. Phys Rep. 2002;366:1-101.
[2] Majhi S, Ghosh D. Synchronization of moving oscillators in three dimensional space. Chaos. 2017;27:053115.
[3] Pecora LM, Carroll TL. Synchronization of chaotic systems. Chaos. 2015;25:097611.
[4] Zhang X, Boccaletti S, Guan S, et al. Explosive synchronization in adaptive and multilayer networks. Phys Rev Lett. 2015;114:038701.
[5] Panaggio MJ, Abrams DM. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity. 2015;28:R67.
[6] Abrams DM, Strogatz SH. Chimera states for coupled oscillators. Phys Rev Lett. 2004;93:174102.
[7] Parastesh F, Jafari S, Azarnoush H, et al. Chimeras. Phys Rep. 2020:In Press.
[8] Kuramoto Y, Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonl Phen Compl Syst. 2002;5:380-5.
[9] Majhi S, Perc M, Ghosh D. Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos. 2017;27:073109.
[10] Omelchenko I, Provata A, Hizanidis J, et al. Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys Rev E. 2015;91:022917.
[11] Wei Z, Parastesh F, Azarnoush H, et al. Nonstationary chimeras in a neuronal network. EPL (Europhys Lett). 2018;123:48003.
[12] Chouzouris T, Omelchenko I, Zakharova A, et al. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos. 2018;28:045112.
[13] Loos SA, Claussen JC, Schöll E, et al. Chimera patterns under the impact of noise. Phys Rev E. 2016;93:012209.
[14] Dudkowski D, Maistrenko Y, Kapitaniak T. Occurrence and stability of chimera states in coupled externally excited oscillators. Chaos. 2016;26:116306.
[15] Parastesh F, Chen C-Y, Azarnoush H, et al. Synchronization patterns in a blinking multilayer neuronal network. Eur Phys J Spec Top. 2019;228:2465-74.
[16] Wang Z, Baruni S, Parastesh F, et al. Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity. Neurocomputing. 2020;406:117-26.
[17] Parastesh F, Jafari S, Azarnoush H, et al. Chimera in a network of memristor-based Hopfield neural network. Eur Phys J Spec Top. 2019;228:2023-33.
[18] Khaleghi L, Panahi S, Chowdhury SN, et al. Chimera states in a ring of map-based neurons. Physica A. 2019;536:122596.
[19] Hagerstrom AM, Murphy TE, Roy R, et al. Experimental observation of chimeras in coupled-map lattices. Nature Phys. 2012;8:658.
[20] Nkomo S, Tinsley MR, Showalter K. Chimera states in populations of nonlocally coupled chemical oscillators. Phys Rev Lett. 2013;110:244102.
[21] Awal NM, Bullara D, Epstein IR. The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators. Chaos. 2019;29:013131.
[22] Dudkowski D, Grabski J, Wojewoda J, et al. Experimental multistable states for small network of coupled pendula. Sci Rep. 2016;6:29833.
[23] Dudkowski D, Czołczyński K, Kapitaniak T. Traveling chimera states for coupled pendula. Nonlinear Dyn. 2019;95:1859-66.
[24] Carvalho PR, Savi MA. Synchronization and chimera state in a mechanical system. Nonlinear Dyn. 2020;102: 907–925.
[25] Gambuzza LV, Buscarino A, Chessari S,et al. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys Rev E. 2014;90:032905.
[26] Majhi S, Bera BK, Ghosh D, et al. Chimera states in neuronal networks: A review. Phys Life Rev. 2019;28:100-21.
[27] Bao H, Zhang Y, Liu W, et al. Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 2020;100:937–50.
[28] Andreev AV, Ivanchenko MV, Pisarchik AN, et al. Stimulus classification using chimera-like states in a spiking neural network. Chaos, Solitons & Fractals. 2020;139:110061.
[29] Wang S, He S, Rajagopal K, Karthikeyan A, et al. Route to hyperchaos and chimera states in a network of modified Hindmarsh-Rose neuron model with electromagnetic flux and external excitation. Euro Phys J Spec Top. 2020;229:929-42.
[30] Ruzzene G, Omelchenko I, Sawicki J, et al. Remote pacemaker control of chimera states in multilayer networks of neurons. Phys Rev E. 2020;102:052216.
[31] Bansal K, Garcia JO, Tompson SH, et al. Cognitive chimera states in human brain networks. Sci Adv. 2019;5:eaau8535.
[32] Bera BK, Ghosh D. Chimera states in purely local delay-coupled oscillators. Phys Rev E. 2016;93:052223.
[33] Yeldesbay A, Pikovsky A, Rosenblum M. Chimeralike states in an ensemble of globally coupled oscillators. Phys Rev Lett. 2014;112:144103.
[34] Clerc M, Coulibaly S, Ferré M, et al. Chimera-type states induced by local coupling. Phys Rev E. 2016;93:052204.
[35] Schmidt L, Krischer K. Clustering as a prerequisite for chimera states in globally coupled systems. Phys Rev Lett. 2015;114:034101.
[36] Buscarino A, Frasca M, Gambuzza LV, et al. Chimera states in time-varying complex networks. Phys Rev E. 2015;91:022817.
[37] Kasatkin D, Yanchuk S, Schöll E, et al. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E. 2017;96:062211.
[38] Kasatkin D, Nekorkin V. Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings. Chaos. 2018;28:093115.
[39] Huo S, Tian C, Kang L, et al. Chimera states of neuron networks with adaptive coupling. Nonlinear Dyn. 2019;96:75-86.
[40] Bera BK, Ghosh D, Banerjee T. Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys Rev E. 2016;94:012215.
[41] Omelchenko I, Omel’chenko E, Hövel P, et al. When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys Rev Lett. 2013;110:224101.
[42] Kundu S, Bera BK, Ghosh D, et al. Chimera patterns in three-dimensional locally coupled systems. Phys Rev E. 2019;99:022204.
[43] Pecora LM, Carroll TL. Master stability functions for synchronized coupled systems. Phys Rev Lett. 1998;80:2109.