Discontinuous coupling and transition from synchronization to an intermittent transient chimera state

Document Type : Article

Authors

1 Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, P.R. China

2 Department of Mathematics, Statistics and Physics, Qatar University, Doha 2713, Qatar

3 - Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam. - Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland

4 Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland

10.24200/sci.2021.57386.5212

Abstract

The coexistence of coherent and incoherent clusters, which is named chimera state, has been observed in various coupling configurations. The majority of the studies have considered a static scheme for the network. In this paper, the synchronization patterns of a time-varying network with discontinuous coupling (on/off links) are studied. At first, the prerequisites for the synchronization of continuous and discontinuous coupling are found by the master stability function method. It is observed that when the network with continuous coupling is set in the synchronous region, changing the coupling to a discontinuous one leads to the emergence of a pattern consisting of alternating synchronization, asynchronization, and chimera state. We call this pattern intermittent transient chimera. The study is completed by investigating the effect of the rate of discontinuity on the network behavior.

Keywords


References
[1] Boccaletti, S., Kurths, J., Osipov, G., et al., "The synchronization of chaotic systems," Phys. Rep., 366(1-2), pp. 1-1
References     1. Boccaletti, S., Kurths, J., Osipov, G., et al. The synchronization     of chaotic systems", Phys. Rep., 366(1{     2), pp. 1{101 (2002).     2. Majhi, S. and Ghosh, D. Synchronization of moving     oscillators in three dimensional space", Chaos, 27(5),     p. 053115 (2017).     3. Pecora, L.M. and Carroll, T.L. Synchronization of     chaotic systems", Chaos, 25(9), p. 097611 (2015).     4. Zhang, X., Boccaletti, S., Guan, S., et al. Explosive     synchronization in adaptive and multilayer networks",     Phys. Rev. Lett., 114(3), p. 038701 (2015).     5. Panaggio, M.J. and Abrams, D. M. Chimera states:     coexistence of coherence and incoherence in networks     of coupled oscillators", Nonlinearity, 28(3), p. R67     (2015).     6. Abrams, D.M., Strogatz, S.H., et al. Chimera states     for coupled oscillators", Phys. Rev. Lett., 93(17), p.     174102 (2004).     7. Parastesh, F., Jafari, S., Azarnoush, H., et al.     Chimeras", Phys. Rep., (2020) (In Press).     8. Kuramoto, Y. and Battogtokh, D. Coexistence of     coherence and incoherence in nonlocally coupled phase     oscillators", Nonl. Phen. Compl. Syst., 5(4), pp. 380{     385 (2002).     Z. Wang et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1661{1668 1667     9. Majhi, S., Perc, M., and Ghosh, D. Chimera states     in a multilayer network of coupled and uncoupled     neurons", Chaos, 27(7), p. 073109 (2017).     10. Omelchenko, I., Provata, A., Hizanidis, J., et al.     Robustness of chimera states for coupled FitzHugh-     Nagumo oscillators", Phys. Rev. E., 91(2), p. 022917     (2015).     11. Wei, Z., Parastesh, F., Azarnoush, et al. Nonstationary     chimeras in a neuronal network", EPL (Europhys.     Lett.), 123(4), p. 48003 (2018).     12. Chouzouris, T., Omelchenko, I., Zakharova, et al.     Chimera states in brain networks: Empirical neural     vs. modular fractal connectivity", Chaos, 28(4), p.     045112 (2018).     13. Loos, S.A., Claussen, J.C., Schvll, E., et al. Chimera     patterns under the impact of noise", Phys. Rev. E.,     93(1), p. 012209 (2016).     14. Dudkowski, D., Maistrenko, Y., and Kapitaniak, T.     Occurrence and stability of chimera states in coupled     externally excited oscillators", Chaos, 26(11), p.     116306 (2016).     15. Parastesh, F., Chen, C.-Y., Azarnoush, H., et al.     Synchronization patterns in a blinking multilayer     neuronal network", Eur. Phys. J. Spec. Top., 228(11),     pp. 2465{2474 (2019).     16. Wang, Z., Baruni, S., Parastesh, et al. Chimeras     in an adaptive neuronal network with burst-timingdependent     plasticity", Neurocomputing, 406, pp. 117{     126 (2020).     17. Parastesh, F., Jafari, S., Azarnoush, H., et al.     Chimera in a network of memristor-based Hop_eld     neural network", Eur. Phys. J. Spec. Top., 228(10),     pp. 2023{2033 (2019).     18. Khaleghi, L., Panahi, S., Chowdhury, S.N., et al.     Chimera states in a ring of map-based neurons",     Physica A., 536, p. 122596 (2019).     19. Hagerstrom, A.M., Murphy, T.E., Roy, R., et al.     Experimental observation of chimeras in coupled-map     lattices", Nature Phys., 8(9), p. 658 (2012).     20. Nkomo, S., Tinsley, M.R., and Showalter, K.,     Chimera states in populations of nonlocally coupled     chemical oscillators", Phys. Rev. Lett., 110(24), p.     244102 (2013).     21. Awal, N.M., Bullara, D., and Epstein, I.R. The     smallest chimera: Periodicity and chaos in a pair of     coupled chemical oscillators", Chaos, 29(1), p. 013131     (2019).     22. Dudkowski, D., Grabski, J., Wojewoda, J., et al.     Experimental multistable states for small network of     coupled pendula", Sci. Rep., 6, p. 29833 (2016).     23. Dudkowski, D., Czo lczy_nski, K., and Kapitaniak,     T. Traveling chimera states for coupled pendula",     Nonlinear Dyn., 95(3), pp. 1859{1866 (2019).     24. Carvalho, P.R. and Savi, M.A. Synchronization and     chimera state in a mechanical system", Nonlinear     Dyn., pp. 1{19 (2020).     25. Gambuzza, L.V., Buscarino, A., Chessari, S., et al.     Experimental investigation of chimera states with     quiescent and synchronous domains in coupled electronic     oscillators", Phys. Rev. E., 90(3), p. 032905     (2014).     26. Majhi, S., Bera, B.K., Ghosh, D., et al. Chimera     states in neuronal networks: A review", Phys. Life     Rev., 28, pp. 100{121 (2019).     27. Bao, H., Zhang, Y., Liu, W., et al. Memristor     synapse-coupled memristive neuron network: synchronization     transition and occurrence of chimera",     Nonlinear Dyn., 100, pp. 937{950 (2020).     28. Andreev, A.V., Ivanchenko, M.V., Pisarchik, A.N., et     al. Stimulus classi_cation using chimera-like states in     a spiking neural network", Chaos, Solitons & Fractals,     139, p. 110061 (2020).     29. Wang, S., He, S., Rajagopal, K., et al. Route to     hyperchaos and chimera states in a network of modi_ed     Hindmarsh-Rose neuron model with electromagnetic     ux and external excitation", Euro. Phys. J. Spec.     Top., 229, pp. 929{942 (2020).     30. Ruzzene, G., Omelchenko, I., Sawicki, J., et al. Remote     pacemaker control of chimera states in multilayer     networks of neurons", Phys. Rev. E., 102(5), p. 052216     (2020).     31. Bansal, K., Garcia, J.O., Tompson, S.H., et al. Cognitive     chimera states in human brain networks", Sci.     Adv., 5(4), p. eaau8535 (2019).     32. Bera, B.K. and Ghosh, D. Chimera states in purely     local delay-coupled oscillators", Phys. Rev. E., 93(5),     p. 052223 (2016).     33. Yeldesbay, A., Pikovsky, A., and Rosenblum, M.     Chimeralike states in an ensemble of globally coupled     oscillators", Phys. Rev. Lett., 112(14), p. 144103     (2014).     34. Clerc, M., Coulibaly, S., Ferr_e, M., et al. Chimeratype     states induced by local coupling", Phys. Rev. E.,     93(5), p. 052204 (2016).     35. Schmidt, L. and Krischer, K. Clustering as a prerequisite     for chimera states in globally coupled systems",     Phys. Rev. Lett., 114(3), p. 034101 (2015).     36. Buscarino, A., Frasca, M., Gambuzza, L.V., et al.     Chimera states in time-varying complex networks",     Phys. Rev. E., 91(2), p. 022817 (2015).     37. Kasatkin, D., Yanchuk, S., Schvll, E., et al. Selforganized     emergence of multilayer structure and     chimera states in dynamical networks with adaptive     couplings", Phys. Rev. E., 96(6), p. 062211 (2017).     38. Kasatkin, D. and Nekorkin, V. Synchronization of     chimera states in a multiplex system of phase oscillators     with adaptive couplings", Chaos, 28(9), p. 093115     (2018).     1668 Z. Wang et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1661{1668     39. Huo, S., Tian, C., Kang, L., et al. Chimera states of     neuron networks with adaptive coupling", Nonlinear     Dyn., 96(1), pp. 75{86 (2019).     40. Bera, B.K., Ghosh, D., and Banerjee, T. Imperfect     traveling chimera states induced by local synaptic     gradient coupling", Phys. Rev. E., 94(1), p. 012215     (2016).     41. Omelchenko, I., Omel'chenko, E., Hvvel, P., et al.     When nonlocal coupling between oscillators becomes     stronger: patched synchrony or multichimera states",     Phys. Rev. Lett., 110(22), p. 224101 (2013).     42. Kundu, S., Bera, B.K., Ghosh, D., et al. Chimera patterns     in three-dimensional locally coupled systems",     Phys. Rev. E., 99(2), p. 022204 (2019).     43. Pecora, L.M. and Carroll, T.L. Master stability functions     for synchronized coupled systems", Phys. Rev.     Lett., 80(10), p. 2109 (1998).    01 (2002).
[2] Majhi, S., and Ghosh, D., "Synchronization of moving oscillators in three dimensional space," Chaos, 27(5), p. 053115 (2017).
[3] Pecora, L. M., and Carroll, T. L., "Synchronization of chaotic systems," Chaos, 25(9), p. 097611 (2015).
[4] Zhang, X., Boccaletti, S., Guan, S., et al. , "Explosive synchronization in adaptive and multilayer networks," Phys. Rev. Lett., 114(3), p. 038701 (2015).
[5] Panaggio, M. J., and Abrams, D. M., "Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators," Nonlinearity, 28(3), p. R67 (2015).
[6] Abrams, D. M., and Strogatz, S. H., et al., "Chimera states for coupled oscillators," Phys. Rev. Lett., 93(17), p. 174102 (2004).
[7] Parastesh, F., Jafari, S., Azarnoush, H., et al., "Chimeras," Phys. Rep., p. In Press (2020).
[8] Kuramoto, Y., and Battogtokh, D., "Coexistence of coherence and incoherence in nonlocally coupled phase oscillators," Nonl. Phen. Compl. Syst., 5(4), pp. 380-385 (2002).
[9] Majhi, S., Perc, M., and Ghosh, D., "Chimera states in a multilayer network of coupled and uncoupled neurons," Chaos, 27(7), p. 073109 (2017).
[10] Omelchenko, I., Provata, A., Hizanidis, J., et al., "Robustness of chimera states for coupled FitzHugh-Nagumo oscillators," Phys. Rev. E, 91(2), p. 022917 (2015).
[11] Wei, Z., Parastesh, F., Azarnoush, et al., "Nonstationary chimeras in a neuronal network," EPL (Europhys. Lett.), 123(4), p. 48003 (2018).
[12] Chouzouris, T., Omelchenko, I., Zakharova, et al., "Chimera states in brain networks: Empirical neural vs. modular fractal connectivity," Chaos, 28(4), p. 045112 (2018).
[13] Loos, S. A., Claussen, J. C., Schöll, E., et al., "Chimera patterns under the impact of noise," Phys. Rev. E, 93(1), p. 012209 (2016).
[14] Dudkowski, D., Maistrenko, Y., and Kapitaniak, T., "Occurrence and stability of chimera states in coupled externally excited oscillators," Chaos, 26(11), p. 116306 (2016).
[15] Parastesh, F., Chen, C.-Y., Azarnoush, H., et al., "Synchronization patterns in a blinking multilayer neuronal network," Eur. Phys. J. Spec. Top., 228(11), pp. 2465-2474 (2019).
[16] Wang, Z., Baruni, S., Parastesh, et al., "Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity," Neurocomputing, 406, pp. 117-126 (2020).
[17] Parastesh, F., Jafari, S., Azarnoush, H., et al., "Chimera in a network of memristor-based Hopfield neural network," Eur. Phys. J. Spec. Top., 228(10), pp. 2023-2033 (2019).
[18] Khaleghi, L., Panahi, S., Chowdhury, S. N., et al., "Chimera states in a ring of map-based neurons," Physica A, 536, p. 122596 (2019).
[19] Hagerstrom, A. M., Murphy, T. E., Roy, R., et al., "Experimental observation of chimeras in coupled-map lattices," Nature Phys., 8(9), p. 658 (2012).
[20] Nkomo, S., Tinsley, M. R., and Showalter, K., "Chimera states in populations of nonlocally coupled chemical oscillators," Phys. Rev. Lett., 110(24), p. 244102 (2013).
[21] Awal, N. M., Bullara, D., and Epstein, I. R., "The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators," Chaos, 29(1), p. 013131 (2019).
[22] Dudkowski, D., Grabski, J., Wojewoda, J., et al., "Experimental multistable states for small network of coupled pendula," Sci. Rep., 6, p. 29833 (2016).
[23] Dudkowski, D., Czołczyński, K., and Kapitaniak, T., "Traveling chimera states for coupled pendula," Nonlinear Dyn., 95(3), pp. 1859-1866 (2019).
[24] Carvalho, P. R., and Savi, M. A., "Synchronization and chimera state in a mechanical system," Nonlinear Dyn., pp. 1-19 (2020).
[25] Gambuzza, L. V., Buscarino, A., Chessari, S., et al., "Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators," Phys. Rev. E, 90(3), p. 032905 (2014).
[26] Majhi, S., Bera, B. K., Ghosh, D., et al., "Chimera states in neuronal networks: A review," Phys. Life Rev., 28, pp. 100-121 (2019).
[27] Bao, H., Zhang, Y., Liu, W., et al., "Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera," Nonlinear Dyn., 100, pp. 937–950 (2020).
[28] Andreev, A. V., Ivanchenko, M. V., Pisarchik, A. N., et al., "Stimulus classification using chimera-like states in a spiking neural network," Chaos, Solitons & Fractals, 139, p. 110061 (2020).
[29] Wang, S., He, S., Rajagopal, K., et al., "Route to hyperchaos and chimera states in a network of modified Hindmarsh-Rose neuron model with electromagnetic flux and external excitation," Euro. Phys. J. Spec. Top., 229, pp. 929-942 (2020).
[30] Ruzzene, G., Omelchenko, I., Sawicki, J., et al., "Remote pacemaker control of chimera states in multilayer networks of neurons," Phys. Rev. E, 102(5), p. 052216 (2020).
[31] Bansal, K., Garcia, J. O., Tompson, S. H., et al., "Cognitive chimera states in human brain networks," Sci. Adv., 5(4), p. eaau8535 (2019).
[32] Bera, B. K., and Ghosh, D., "Chimera states in purely local delay-coupled oscillators," Phys. Rev. E, 93(5), p. 052223 (2016).
[33] Yeldesbay, A., Pikovsky, A., and Rosenblum, M., "Chimeralike states in an ensemble of globally coupled oscillators," Phys. Rev. Lett., 112(14), p. 144103 (2014).
[34] Clerc, M., Coulibaly, S., Ferré, M., et al., "Chimera-type states induced by local coupling," Phys. Rev. E, 93(5), p. 052204 (2016).
[35] Schmidt, L., and Krischer, K., "Clustering as a prerequisite for chimera states in globally coupled systems," Phys. Rev. Lett., 114(3), p. 034101 (2015).
[36] Buscarino, A., Frasca, M., Gambuzza, L. V., et al., "Chimera states in time-varying complex networks," Phys. Rev. E, 91(2), p. 022817 (2015).
[37] Kasatkin, D., Yanchuk, S., Schöll, E.,et al., "Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings," Phys. Rev. E, 96(6), p. 062211 (2017).
[38] Kasatkin, D., and Nekorkin, V., "Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings," Chaos, 28(9), p. 093115 (2018).
[39] Huo, S., Tian, C., Kang, L., et al., "Chimera states of neuron networks with adaptive coupling," Nonlinear Dyn., 96(1), pp. 75-86 (2019).
[40] Bera, B. K., Ghosh, D., and Banerjee, T., "Imperfect traveling chimera states induced by local synaptic gradient coupling," Phys. Rev. E, 94(1), p. 012215 (2016).
[41] Omelchenko, I., Omel’chenko, E., Hövel, P., et al., "When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states," Phys. Rev. Lett., 110(22), p. 224101 (2013).
[42] Kundu, S., Bera, B. K., Ghosh, D., et al., "Chimera patterns in three-dimensional locally coupled systems," Phys. Rev. E, 99(2), p. 022204 (2019).
[43] Pecora, L. M., and Carroll, T. L., "Master stability functions for synchronized coupled systems," Phys. Rev. Lett., 80(10), p. 2109 (1998).