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Abstract. Coexistence of coherent and incoherent clusters, called chimera state, has
been observed in di�erent coupling con�gurations. A majority of studies have considered
a static scheme for the network. In this paper, synchronization patterns of a time-varying
network with discontinuous coupling (on/o� links) were studied. At �rst, the prerequisites
for synchronization of continuous and discontinuous coupling were found using the master
stability function method. It was observed that when the network with continuous coupling
was set in the synchronous region, changing the coupling to a discontinuous one would lead
to the emergence of a pattern consisting of alternating synchronization, asynchronization,
and chimera state. This pattern is called intermittent transient chimera here. This study is
completed by investigating the e�ect of the rate of discontinuity on the network behavior.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Synchronization is a ubiquitous event in nature that
has many applications in di�erent sciences, ranging
from physics to technology and society [1]. Recently, a
majority of the studies have focused on the synchronous
states in the network of coupled oscillators [2,3]. Rele-
vant surveys have demonstrated di�erent synchronous
patterns such as explosive synchronization, generalized
synchronization, partial synchronization, coexistence
of synchronization and asynchronization, etc. [1,4,5].
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Chimera state is a special spatiotemporal pattern in the
networks, wherein there exist both groups of coherent
and incoherent oscillators [6,7].

The initial survey of the chimera state belonged
to a network of non-locally coupled complex Ginzburg-
Landau oscillators [8]. This state has drawn consid-
erable attention after its discovery in di�erent �elds
such as mechanics and biology [9{18]. In addition,
several experimental investigations have reported the
appearance of chimera states in optical [19], chem-
ical [20,21], mechanical [22{24], and electronic sys-
tems [25]. Chimera state has certain associations with
numerous real events. The most relevant one is the uni-
hemispheric sleep, during which half part of the brain
is asleep and synchronous, and the other is awake and
asynchronized. Other related events are brain disor-
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ders including Epileptic seizures, Parkinson's disease,
Alzheimer's disease, etc. [26]. Due to this relevance,
the chimera states have been studied in di�erent
neuronal networks [27{30]. Recently, a comprehensive
review of chimera states in neuronal networks was
proposed by Majhi et al. [26]. Bansal et al. [31] studied
the emergence of chimera state in an empirical neuronal
network with 76 brain regions. They considered nine
cognitive systems and found that the chimera state was
linked to cognitive brain functions.

Initially, the chimera state was reported in a non-
local coupling scheme [8]. Then, the studies indicated
that chimeras could also appear in networks with local
or global connections [32,33]. For example, Clerc et
al. [34] investigated the emergence, stability properties,
and bifurcation diagram of chimera-like states in a
locally coupled network and found the required con-
ditions necessary for their emergence. If the oscillators
are globally coupled, it is expected that they have
similar motions in time [33]. Schmidt and Krischer [35]
considered a globally coupled network and searched
for the necessities for the emergence of the chimera
state. They reported that the �rst requisite was a
clustering mechanism for splitting the oscillators into
two groups. Among the studies, a few ones considered
time-varying coupling [36{39]. For instance, Buscarino
et al. [36] investigated a two population network of
coupled Kuramoto oscillators with time-varying links.
They found that diverse patterns of chimeras such
as stable, breathing, and alternating chimera states
could emerge in this network. The adaptive coupling
was also studied in the globally coupled Kuramoto-
type oscillators [37]. It was found that the formed
synchronous clusters depended on the adaptation func-
tion. Huo et al. [39] considered adaptive coupling in
the network of FitzHugh-Nagumo models with three
di�erent structures including the global, random, and
scale-free ones. This study revealed that adaptive
coupling played a key role in the occurrence of chimera;
however, it has di�erent evolutions in three structures.

In this paper, the e�ect of discontinuous coupling

on the synchronization behavior of the network was
studied. It was assumed that the links were on at a
time interval and then, o� at the next time interval.
At �rst, the prerequisites for the synchronization of
the continuous and discontinuous couplings were found
using the Master Stability Function (MSF). Then, the
network was numerically solved, and it was observed
that by adjusting the coupling discontinuously, the
behavior of the network changed from the complete
to an intermittent synchronous state, in which the
behavior of the network changed alternatively between
synchronization and asynchronization. During this
alternation, the chimera state was observed. Therefore,
the pattern intermittent was referred to as the transient
chimera in this study. Finally, the e�ect of the on/o�
rate on the network behavior was studied.

2. The model

Lorenz system was selected for the elements of our
network. Figure 1 shows the time series and phase
space of the Lorenz system. The equations of the ith
node of the network can be described as follows:

_xi = s(yi � xi) + "
NX
j=1

Gijxj ;

_yi = xi(�� zi)� yi; _zi = xiyi � �zi; (1)

where N = 100 indicates the number of the nodes in
the network, " is the coupling strength, Gij is the zero-
row sum coupling matrix with Gij = 1, if node i and j
are connected, and:

Gij = 0 else; and : Gii = �
NX

j=1;j 6=i
Gij :

The parameters are � = 28, s = 10, and � = 2. A
restriction was put on the matrix G so that at a time
interval nT < t < (n + �)T , all the connections were
on with Gij = 1, i; j = 1; :::; N , i 6= j and at the

Figure 1. Time series (a) and phase portrait (b) of the Lorenz system.
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Figure 2. The schematic of the network with
discontinuous coupling for N = 6 nodes.

next time interval (n + �)T < t < (n + 1)T , all the
connections except the nearest neighbors were o�, i.e.,
Gij = 1, j = i + 1; i � 1. This process was repeated
periodically and � was called the discontinuity rate,
0 < � < 1. Figure 2 represents the schematic of the
described network with N = 6 nodes.

To evaluate the coherence of the oscillators, the
local order parameter was applied. This measure that
speci�es the local ordering of the network units is
calculated as follows [26]:

Li =

������ 1
2v

X
ji�kj�v

ej�k

������ ; i = 1; :::; N; (2)

where j =
p�1 and v = 3 is the number of the

nearest neighbors, and �i is the geometric phase of
the ith oscillator. In addition, the geometric phase was
calculated as �i = arctan( yixi ) [40{42]. The local order
parameter determines whether or not a unit belongs to
a coherent group. In fact, Li = 1 represents belonging
to a coherent group, while Li = 0 shows that the ith
unit belongs to an incoherent group.

3. Results

The above network is �rstly considered in the case of
continuous coupling, i.e., Gij = 1, i; j = 1; :::; N , i 6= j
for all t. MSF method is an analytical approach to
�nding su�cient conditions for synchronization of a
network [43]. To calculate MSF, �rstly, the variational
equations should be obtained which is as follows:

�k = [DF + "kDH]�k; (3)

where F is the equations of the uncoupled system (here,
Lorenz system), D the Jacobean, and H the coupling
function, which is de�ned here as:

H = DH =

24 1 0 0
0 0 0
0 0 0

35 ;
since the coupling is between x variables. Moreover,
k, k = 0; 1; :::; N are the eigenvalues of the coupling

matrix (G). Since the network is connected, the
eigenvalues of G have the property of 1 = 0 <
2 < ::: < N . The largest Lyapunov exponent of the
variational equations (Eq. (3)) is the MSF that deter-
mines the stability of the synchronous state. Usually,
MSF is computed considering that K = "k and the
MSF< 0 shows that the synchronous state is stable.
Given that the zero-crossing point of MSF is K = "k,
the smallest k results in the higher coupling strength
(") needed for stable synchronization. Therefore, in our
investigations, we have only considered 2 to obtain the
" larger, which ensures the synchronization.

For the continuous network of Eq. (1), the varia-
tional equations are as follows:

_�1 = (�(")� s)�1 + s�2;

_�2 = (�� z)�1 � �2 � x�3;
_�3 = y�1 + x�2 � ��3: (4)

The largest Lyapunov exponent of Eq. (4), which is the
MSF of the continuous network, is shown in Figure 3
in black color. According to this curve, the network is
synchronous for " > 0:076.

By assuming the links to be discontinuous, the
coupling strength threshold at which the network is
synchronous would change. In this case, the cou-
pling matrix (G) and its eigenvalues are time-varying.
Hence, the variational equations of the discontinuous
network can be given as follows:

_�1 = (�("(t))� s)�1 + s�2;

_�2 = (�� z)�1 � �2 � x�3;
_�3 = y�1 + x�2 � ��3; (5)

where (t) switches between two eigenvalues of the
global coupling matrix (for �t = �

T ) and local coupling
matrix (for �t = 1��

T ). In this study, the largest

Figure 3. Master Stability Function (MSF) of the
continuous network (black) and the discontinuous network
for T = 0:1 and di�erent rates with respect to coupling
strength. The curves of � = 0:8; 0:6; 0:4; 0:2 are shown by
blue, red, green, and cyan, respectively.
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Lyapunov exponents of the variational equation (Eq.
(5)) were calculated versus the coupling strength. The
period of discontinuity was set at T = 0:1. The
results are shown in Figure 3 for � = 0:2; 0:4; 0:6; 0:8.
According to this �gure, as the discontinuity rate
decreases, the synchronization state becomes stable in
higher coupling strength values. These results are very
close to (not exactly the same) the numerical solutions
of the network.

For further investigations, this study evaluated
the e�ects of the period of discontinuity on the synchro-
nization threshold obtained by the largest Lyapunov
exponent of the time-varying variational equations (Eq.
(5)). To this end, two discontinuity rates of � = 0:4 and
0.6 were taken into account and the MSF of the time-
averaged network was computed. Then, the largest
Lyapunov exponent of Eq. (5) was calculated by setting
the discontinuity period at T = 0:05; 0:1; 0:5; 1, the
results of which are presented in Figure 4. As observed,
for very short discontinuity periods, the solutions of
the time-varying equations were quite close to those
of the time-averaged one. As the discontinuity period
increased, the synchrony threshold moved farther away.
Moreover, it seems that the value of period T has a
greater e�ect on the lower � values.

For numerical simulations of the discontinuous
network, the fourth-order Runge-Kutta method with
the time step of 0.01 was used. The initial conditions
of the oscillators were randomly selected. The coupling
strength value was chosen to be " = 0:1 at which
the continuous network was synchronous. To con�rm
this, Figure 5 shows the space-time plot and time
snapshot of the network for this coupling strength.
Figure 6 illustrates the space-time plot and snapshot
of the network, assuming equal time intervals for the
discontinuity process, i.e., � = 0:5. According to this
�gure, when coupling becomes discontinuous, the net-
work synchronization is disturbed and some incoherent
regions are detected in the space-time plot. In fact, the
time evolution of the network represents an alternation
between synchronization and asynchronization in time.

Figure 4. Master Stability Function (MSF) of the
averaged network (shown in black) and the Largest
Lyapunov Exponent (LLE) of the variational equation
(Eq. (5)) for T = 0:05; 0:1; 0:5; 1 (shown in red, blue,
green, and cyan): (a) � = 0:4 and (b) � = 0:6.

Figure 5. The synchronous patterns for continuous
coupling with " = 0:1: (a) Space-time plot and (b) time
snapshot.

In these transitions from synchrony to asynchrony at
short time intervals, the coexistence of synchronous and
asynchronous domains can be observed. The formation
of the synchronous and asynchronous regions can be
referred to as the chimera state; however, since this
coexistence occurs alternatively at short time intervals,
the observed pattern is referred to as an intermittent
transient chimera in this study. The local order pa-
rameter of the network, in this case, is demonstrated in
Figure 6(b) that con�rms the existence of intermittent
synchronization, chimera, and asynchronization. The
time snapshots of the network at di�erent times are
presented in Figure 6(c). Figure 7 demonstrates the
time series of the �rst and second oscillators. Based
on the time series, it can be concluded that these two
oscillators are only synchronous at a time interval and
then, they become asynchronous again.

In the next step, the network patterns are inves-
tigated by varying the discontinuity rate (�). Figure 8
illustrates the pattern of the network for di�erent �
values. In Figure 8(a), the network pattern with
� = 0:8 is plotted which shows the synchronization
state. Thus, the discontinuous coupling with a low
rate cannot change the synchronized behavior of the
oscillators. Figure 8(b) and (c) show the network
behavior for � = 0:6; 0:4 , respectively, at which the
synchronous state of the network is disturbed, and
the incoherent regions appear in the network. In
case the discontinuity rate is set to lower values, the
synchronous state is completely destroyed and the
oscillators oscillate asynchronously. Figure 8(d) shows
the asynchronous state for � = 0:2.

To completely survey the network behavior, a
phase diagram in (�; ") plane is provided in Figure 9.
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Figure 6. The network patterns for discontinuous
coupling with � = 0:5 and " = 0:1: (a) space-time plot, (b)
local order parameter, and (c) time snapshots at t = 2818
(synchronized behavior), t = 2834 (chimera state) and
t = 2842 (asynchronized behavior).

In this �gure, the synchronous state is shown in green,
the intermittent transient chimera state in yellow, and
asynchronous state in red. According to this diagram,
as the discontinuity rate (�) grows, the asynchronous
state region and the chimera region are reduced and the
network tends to become synchronous, even for smaller
coupling strengths.

Figure 7. Time series of the �rst and second oscillators of
the network with discontinuous coupling for � = 0:5 and
" = 0:1.

4. Conclusion

The present study mainly focused on the consequences
of discontinuous coupling on the synchronous motion of
the network. Firstly, the network was considered with
continuous global coupling and the coupling strength
threshold, leading to the synchronous state, was ob-
tained using the Master Stability Function (MSF)
method. Then, the coupling was assumed to be
discontinuous, switching between the global and local
coupling at di�erent rates. To evaluate the e�ect of the
discontinuous links on the synchronization threshold,
MSF method was modi�ed using the time-dependent
eigenvalues in the variational equations. Then, the
largest Lyapunov exponents of the new variational
equations were calculated at di�erent discontinuity
rates. The results indicated that a higher coupling
strength was needed for synchronization of the network
with on/o� links. Moreover, upon decreasing the
discontinuity rate (i.e., on to o� rate), this threshold
increased. The synchrony threshold obtained from the
time-dependent variational equations was quite close
to that found through numerical solutions, yet not
exactly the same. The e�ect of the discontinuity
period on the synchronization results was evaluated
by computing the MSF of the network in the case of
time-averaged coupling matrix and time-varying one in
di�erent periods. It was found that for small periods,
the values of the time-averaged and time-varying MSF
curves were quite close; however, upon lengthening the
period, they would become quite distant.

Numerical simulations of the network showed that
discontinuing the coupling shifted the network behav-
ior from complete synchronization to an alternation
between synchronization and asynchronization states.
During this transition from synchrony to asynchrony,
the chimera state emerged. Since this chimera state
was transient and alternately repeated over time, it
was referred to as the intermittent transient chimera in
this study. To evaluate the coherence of the network,
the local order parameter was used. The simulations
were done at di�erent discontinuity rates and a phase
diagram of the network behavior was presented.



1666 Z. Wang et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1661{1668

Figure 8. The network patterns (upper �gure: space-time plot; lower �gure: local order parameter) for discontinuous
coupling with " = 0:1 for (a) � = 0:8, (b) � = 0:6, (c) � = 0:4, and (d) � = 0:2.

Figure 9. Phase diagram of the network in (�; ") plane.
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