Bioconvection phenomenon for the boundary layer flow of magnetohydrodynamic Carreau liquid over a heated disk

Document Type : Article

Authors

1 Department of Applied Mathematics & Statistics, Institute of Space Technology Islamabad, P.O. Box 2750, Pakistan

2 - Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China. - Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China

3 Department of Mechanical Engineering, College of Engineering, Prince Muhammad bin Fahd University, Al-Khobar, Saudi Arabia

4 Renewable Energy Research Centre, Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut's University of Technology North Bangkok, 1518 Pracharat 1 Road, Bangsue, Bangkok 10800, Thailand

10.24200/sci.2021.53970.3518

Abstract

A numerical examination is conducted for the magnetohydrodynamics steady Carreau fluid flow on the transport of thermal energy and mass specie comprising nanoparticles with gyrotactic microorganisms through heated disk. The role of thermophoresis and Brownian motion are added in this flow problem. Governing equations are achieved by using the boundary layer theory in view of a coupled system of PDEs involving boundary conditions. The highly non-linear system of ODEs is generated using the concept of the transformation approach. Since the system of transformed equations is highly nonlinear, so, an approximate solution is estimated via optimal homotopy method. The role of prominent parameters on velocity, thermal energy, mass specie and motile density microorganisms examined graphically. Additionally, graphical observations regarding mass specie, thermal energy and velocities are discussed briefly. It has estimated that the motion of fluid particles is diminished because of the intensity of the magnetic field while mass specie and fluid temperature rise versus enhancement the values of the magnetic field.

Keywords


References       1. Carreau, P.J. Rheological equations from molecular       network theories", Transactions of the Society of Rheology,       16(1), pp. 99{127 (1972).       M. Sohail et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1896{1907 1905       2. Carreau, P.J. An analysis of the viscous behavior of       polymer solutions", Can. J. Chem. Eng., 57, pp. 135{       140 (1979).       3. Gri_ths, P.T. Flow of a generalised Newtonian uid       due to a rotating disk", Journal of Non-Newtonian       Fluid Mechanics, 221, pp. 9{17 (2015).       4. Machireddy, G.R. and Naramgari, S. Heat and mass       transfer in radiative MHD Carreau uid with cross       di_usion", Ain Shams Engineering Journal, 9(4), pp.       1189{1204 (2018).       5. Kumar, K.G., Gireesha, B.J., Rudraswamy, N.G., et       al. Radiative heat transfers of Carreau uid ow over       a stretching sheet with uid particle suspension and       temperature jump", Results in Physics, 7, pp. 3976{       3983 (2017).       6. Irfan, M., Khan, M., and Khan, W.A. Numerical       analysis of unsteady 3D ow of Carreau nanouid with       variable thermal conductivity and heat source/sink",       Results in Physics, 7, pp. 3315{3324 (2017).       7. Kefayati, G.R. and Tang, H. MHD thermosolutal       natural convection and entropy generation of Carreau       uid in a heated enclosure with two inner circular cold       cylinders", using LBM. International Journal of Heat       and Mass Transfer, 126, pp. 508{530 (2018).       8. Irfan, M., Khan, W.A., Khan, M., and Gulzar, M.M.       Inuence of Arrhenius activation energy in chemically       reactive radiative ow of 3D Carreau nanouid with       nonlinear mixed convection", Journal of Physics and       Chemistry of Solids, 125, pp. 141{152 (2019).       9. Choi, S.U.S. and Eastman, J.A. Enhancing thermal       conductivity of uids with nanoparticles", Presented at       ASME International Mechanical Engineering Congress       and Exposition (1995).       10. Sohail, M., Naz, R., and Raza, R. Application       of double di_usion theories to Maxwell nanouid       under the appliance of thermal radiation and gyrotactic       microorganism", Multidiscipline Modeling in       Materials and Structures, 16(2), pp. 256{280 (2020).       https://doi.org/10.1108/MMMS-05-2019-0101       11. Bilal, S., Sohail, M., Naz, R., and Malik, M.Y.       Dynamical and optimal procedure to analyse the       exhibition of physical attribute imparted by sutterby       magneto anno uid in darcy medium yield by axially       stretched cylinder", Canadian Journal Physics, 98(1),       pp. 1{10 (2020).       12. Sohail, M. and Naz, R. Modi_ed heat and mass       transmission models in the magnetohydrodynamic ow       of Sutterby nanouid in stretching cylinder", Physica       A: Statistical Mechanics and its Applications, 549, p.       124088 (2020).       13. Sohail, M. and Raza, R. Analysis of radiative magneto       nano pseudo-plastic material over three dimensional       nonlinear stretched surface with passive control of       mass ux and chemically responsive species", Multidiscipline       Modeling in Materials and Structures, 16(5),       pp. 1061{1083 (2020).       14. Khan, H., Haneef, M., Shah, Z., Islam, S., Khan,       W., and Muhammad, S. The combined magneto       hydrodynamic and electric _eld e_ect on an unsteady       Maxwell nanouid ow over a stretching surface under       the inuence of variable heat and thermal radiation",       Applied Sciences, 8(2), p. 160 (2018).       15. Sohail, M., Naz, R., and Bilal, S. Thermal performance       of an MHD radiative Oldroyd-B nanouid       by utilizing generalized models for heat and mass       uxes in the presence of bioconvective gyrotactic microorganisms       and variable thermal conductivity", Heat       Transfer-Asian Research, 48(7), pp. 2659{2675 (2019).       16. Bhatti, M.M., Zeeshan, A., Ellahi, R., and Shit, G.C.       Mathematical modeling of heat and mass transfer       e_ects on MHD peristaltic propulsion of two-phase       ow through a Darcy-Brinkman-Forchheimer porous       medium", Advanced Powder Technology, 29(5), pp.       1189{1197 (2018).       17. Dogonchi, S., Alizadeh, M., and Ganji, D.D. Investigation       of MHD Go-water nanouid ow and heat       transfer in a porous channel in the presence of thermal       radiation e_ect", Advanced Powder Technology, 28(7),       pp. 1815{1825 (2017).       18. Prasad, P.D., Kumar, R.V.M.S.S.K., and Varma,       S.V.K. Heat and mass transfer analysis for the MHD       ow of nanouid with radiation absorption", Ain       Shams Engineering Journal, 9(4), pp. 801{813 (2016).       19. Hamid, M., Usman, M., Khan, Z.H., Haq, R.U., and       Wang, W. Numerical study of unsteady MHD ow of       Williamson nanouid in a permeable channel with heat       source/sink and thermal radiation", The European       Physical Journal Plus, 133(12), p. 527 (2018).       20. Zhao, G., Wang, Z., and Jian, Y. Heat transfer of       the MHD nanouid in porous microtubes under the       electrokinetic e_ects", International Journal of Heat       and Mass Transfer, 130, pp. 821{830 (2019).       21. Cengel, Y., Heat and Mass Transfer: Fundamentals       and Applications, McGraw-Hill Higher Education       (2020).       22. Vasilyeva, M., Babaei, M.E., Chung, T., and Spiridonov,       D. Multiscale modeling of heat and mass       transfer in fractured media for enhanced geothermal       systems applications", Applied Mathematical Modelling,       67, pp. 159{178 (2019).       23. Vandewalle, L.A., Vijver, R.V.D., Geem, K.M.V., and       Marin, G.B. The role of mass and heat transfer in       the design of novel reactors for oxidative coupling of       methane", Chemical Engineering Science, 198, pp.       268{289 (2019).       24. Huminic, G. and Huminic, A. Heat transfer capability       of the hybrid nanouids for heat transfer applications",       Journal of Molecular Liquids, 272, pp. 857{870 (2018).       25. Karman, T.V. Uber laminare and turbulente Reibung",       Z. Angew. Math. Mech., 1, pp. 233{252 (1921).       1906 M. Sohail et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1896{1907       26. Boujo, E. and Cadot, O. Stochastic modeling of a       freely rotating disk facing a uniform ow", Journal of       Fluids and Structures, 86, pp. 34{43 (2019).       27. Usman, M., Hamid, M., Haq, R.U., and Wang, W.       Heat and uid ow of water and ethylene-glycol       based Cu-nanoparticles between two parallel squeezing       porous disks: LSGM approach", International Journal       of Heat and Mass Transfer, 123, pp. 888{895 (2018).       28. Lok, Y.Y., Merkin, J.H., and Pop, I. Axisymmetric       rotational stagnation-point ow impinging on a       permeable stretching/shrinking rotating disk", European       Journal of Mechanics-B/Fluids, 72, pp. 275{292       (2018).       29. Platt, J.R. Bioconvection patterns in cultures of freeswimming       organisms", Science, 133, pp. 1766{1767       (1961).       30. Chakraborty, T., Das, K., and Kundu, P.K. Framing       the impact of external magnetic _eld on bioconvection       of a nanouid ow containing gyrotactic microorganisms       with convective boundary conditions", Alexandria       Engineering Journal, 57(1), pp. 61{71 (2018).       31. Khan, M., Irfan, M., and Khan, W.A. Impact of       nonlinear thermal radiation and gyrotactic microorganisms       on the Magneto-Burgers nanouid", International       Journal of Mechanical Sciences, 130, pp. 375{       382 (2017).       32. Usman, M., Hamid, M., and Rashidi, M.M. Gegenbauer       wavelets collocation-based scheme to explore       the solution of free bio-convection of nanouid in       3D nearby stagnation point", Neural Computing and       Applications, 31(11), pp. 8003{8019 (2019).       33. Khan, W.A. and Makinde, O.D. MHD nanouid       bioconvection due to gyrotactic microorganisms over       a convectively heat stretching sheet", International       Journal of Thermal Sciences, 81, pp. 118{124 (2014).       34. Zhao, M., Xiao, Y., and Wang, S. Linear stability       of thermal-bioconvection in a suspension of gyrotactic       micro-organisms", International Journal of Heat and       Mass Transfer, 126, pp. 95{102 (2018).       35. Marinca, V., Heri_sanu, N., and Neme_s, I. Optimal       homotopy asymptotic method with application to thin       _lm ow", Open Physics, 6(3), pp. 648{653 (2008).       36. Ali, L., Islam, S., Gul, T., et al. New version of       optimal homotopy asymptotic method for the solution       of nonlinear boundary value problems in _nite and       in_nite intervals", Alexandria Engineering Journal,       55(3), pp. 2811{2819 (2016).       37. Bilal, S., Sohail, M., Naz, R., Malik, M.Y., and       Alghamdi, M. Upshot of ohmically dissipated Darcy-       Forchheimer slip ow of magnetohydrodynamic Sutterby       uid over radiating linearly stretched surface in       view of Cash and Carp method", Applied Mathematics       and Mechanics, 40(6), pp. 861{876 (2019).       38. Naz, R., Sohail, M., and Hayat, T. Numerical exploration       of heat and mass transport for the ow       of nanouid subject to Hall and ion slip e_ects",       Multidiscipline Modeling in Materials and Structures,       16(5), pp. 951{965 (2020).       39. Sohail, M. and Tariq, S. Dynamical and optimal       procedure to analyze the attributes of yield exhibiting       material with double di_usion theories", Multidiscipline       Modeling in Materials and Structures, 16(3), pp.       557{580 (2019).       40. Makinde, O. and Animasaun, I. Bioconvection in       MHD nanouid ow with nonlinear thermal radiation       and quartic autocatalysis chemical reaction past an       upper surface of a paraboloid of revolution", International       Journal of Thermal Sciences, 109, pp. 159{171       (2016).       41. Makinde, D. and Animasaun, I.L. Thermophoresis       and Brownian motion e_ects on MHD bioconvection of       nanouid with nonlinear thermal radiation and quartic       chemical reaction past an upper horizontal surface       of a paraboloid of revolution", Journal of Molecular       Liquids, 221, pp. 733{743 (2016).       42. Mutuku, W.N. and Makinde, O.D. Hydromagnetic       bioconvection of nanouid over a permeable vertical       plate due to gyrotactic microorganisms", Computers       & Fluids, 95, pp. 88{97 (2014).       43. Khan, W., Makinde, O., and Khan, Z. MHD boundary       layer ow of a nanouid containing gyrotactic       microorganisms past a vertical plate with Navier slip",       International Journal of Heat and Mass Transfer, 74,       pp. 285{291 (2014).       44. Makinde, O.D., Kumara, B.P., Ramesh, G., and       Gireesha, B.J. Simultaneous convection of carreau       uid with radiation past a convectively heated moving       plate", Defect and Di_usion Forum, 389, pp. 60{70       (2018).       45. Atif, S., Hussain, S., and Sagheer, M. E_ect of thermal       radiation on MHD micropolar Carreau nanouid       with viscous dissipation, Joule heating, and internal       heating", Scientia Iranica, 26(6), pp. 3875{3888       (2019).       46. Iqbal, M., Gha_ari, A., and Mustafa, I. Investigation       into thermophoresis and Brownian motion e_ects of       nanoparticles on radiative heat transfer in Hiemenz       ow using spectral method", Scientia Iranica, 26(6),       pp. 3905{3916 (2019).       47. Avinash, K., Sandeep, N., Makinde, O.D., and Animasaun,       I.L. Aligned magnetic _eld e_ect on radiative       bioconvection ow past a vertical plate with       thermophoresis and Brownian motion", In Defect and       Di_usion Forum, 377, pp. 127{140, Trans Tech Publications       Ltd (2017).