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Abstract. This study carried out a numerical examination on the e�ect of magnetohy-
drodynamic steady ow of Carreau uid on the transfer of thermal energy and mass species
comprising nanoparticles with gyrotactic microorganisms through a heated disk. The roles
of thermophoresis and Brownian motion were also considered in resolving this ow problem.
Governing equations were solved using boundary layer theory emphasizing the coupled
system of Partial Di�erential Equations (PDEs) involving boundary conditions. The
highly non-linear system of Ordinary Di�erential Equations (ODEs) was generated using
transformation approach. Due to the highly nonlinear form of the system of transformed
equations, an approximate solution was presented which was evaluated using optimal
homotopy method. Moreover, the e�ects of prominent parameters on velocity, thermal
energy, mass species, and motile density microorganisms were graphically examined. In
addition, graphical observations regarding the mass species, thermal energy, and velocities
were briey discussed. It was estimated that in an intensi�ed magnetic �eld, the motion
of uid particles and temperature of uid would decrease and increase, respectively.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Due to their extensive applicability, non-Newtonian
uids have drawn much academic attention. This
research is motivated by the abundance of these uids
in nature, as well. Such uids are widely used in
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di�erent �elds such as foodstu�s, extrusion of molten
polymers and plastics, �ber synthesis, drilling gas and
oil wells, etc. Many studies have been conducted on
non-Newtonian uids and their phenomenal roles. For
instance, a number of researchers have investigated how
to improve the thermal conductivity of non-Newtonian
liquids. In addition, some others have shifted their
focus to the di�erence in modeling the power law for
non-Newtonian uids. However, the power law model
su�ers some drawbacks including low and high shear
rates and then, authors have examined the viscosity
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model called Carreau rheology. This is a special type
of Newtonian liquid and the shear rate is a function
of viscosity; this phenomenon is useful for high shear-
rate liquids. Carreau [1,2] employed an important
theory regarding rheological equations based on net-
work molecular models. Gri�ths [3] studied the ow
behavior of generalized Newtonian liquid through disk
by applying the Carreau uid model. Machireddy and
Naramgari [4] discussed the role of transfer of thermal
energy and mass species with cross-di�usion involving
Magnetohydrodynamic (MHD) Carreau uid on the
stretch surface. Another notable study on Carreau
uid can be found in [5{8] with various explorations
therein. Nanoparticles are tiny particles made of
dense nanoparticles or nano�bers ranging between (1-
100 nm) which are normally equated through the
conventional heat carrying uids, and they enjoy an
advanced thermal conductivity. As can be found
in the literature, Choi and Eastman [9] initially put
forward the idea of utilizing uid consisting of nano-
sized particles and base uid, called nanouid. There
are many applications containing insulation of en-
ergy, astronomical, cooling processes, solar amusement
and defense, magnetic sticking, mass/heat transport
strengthening and medical instruments, etc. Such
applications require substantial point altering from
conventional uids. Therefore, the current authors
of this study have become drawn to nanouid and
discussed some useful �ndings which were previously
extracted from Refs. [10{15].

MHD is an added working zone of building sci-
ences nowadays that includes the e�ect of magnetic
�elds. Applications of such types of uid ow are
pumps, power generators, magnetic drug treatment,
accelerators, plasma studies, and ow meters. Bhatti et
al. [16] discussed mathematical modeling of mass and
heat e�ects on the ow of electrically conducting uid
for two-phase peristaltic propulsion through a porous
medium with Darcy-Brinkman-Forchheimer. Many
researchers [17{20] interpreted di�erent aspects of non-
Newtonian uid such as Williamson, Micropolar and
Carreau uids, etc.

Heat forms out of energy and is transmitted from
one place to another, the di�erence of which may
turn into thermal energy. Physics can help read the
investigations to produce the energy di�erence called
heat transfer. The mathematical form of heat transfer
is derived from Fourier's law of conduction. For
heat transfer measurement, thermal conductivity is a
very important factor which is de�ned as the ability
to measure heat conduction. The enhancement of
thermal conductivity for a material is suggestive of
being a good conductor while a poor insulator results
from low thermal conductivity. Similarly, transport
of mass species involves the movement or di�usion of
uid particles from one place to another. Transport

of thermal energy and mass species are the kinetic
processes that may be investigated, either separately
or jointly. The transport of thermal energy and
solubility of nanouid can be investigated based on
Fick's and Fourier's laws. These movements are
modeled by similar mathematical equations in the
form of convection and di�usion and both transfer
types must be considered jointly in some cases, i.e.,
ablation and evaporative cooling. Applications of mass
species and thermal energy transport in di�erent �elds
including oil transport wonder, dispersion of speci�c
medications in blood, food preparation, cooling of elec-
tronic equipment, manufacturing/materials processing,
absorption, drying, precipitation, membrane �ltration,
and evaporation can be seen in [21]. For further
information on mass and heat transfer applications,
readers are referred to [22{24] and the studies cited
therein for further insights.

Rotation is the most powerful and useful tool for
such as applications medical equipment, gas turbine,
food processing, and computer operating, while nu-
merous other applications have been found in food of
rotating geometries (disk, cylinder, and surface). It
is evident that rotating disk has an important role
from the research viewpoint. Concept of rotating disk
was developed by Karman �rst [25]. He employed
transformation (Von-Karmaan) to evaluate solution
ow problems over heated rotating disk. Several other
applications for rotations can be found in [26{28].

The particles of this impact (bio-convection)
which are not self-boosted microorganisms have been
investigated. Another terminology for the bio-
convection approach is called boosted microorganism.
So, this type of terminology was initiated by Platt [29]
who concluded that drag force could be generated from
the movement of microorganisms while gravitation
torque was produced due to the equilibrium position
of particles in the cells of swimming microorganism.
Chakraborty et al. [30] explored the remaining un-
known aspects of the magnetic �eld and nanoparticles
with emphasis on gyrotactic microorganisms. Impact
between gyrotactic microorganisms and nanoparticles
and the resulting radiation were measured by Khan et
al. [31]. For deeper insights, readers are referred to
the works mentioned in [32{34] and other references
therein.

Satisfactory performance of a solution should be
taken into consideration from two aspects: the case
of approximate solution and generation of an accu-
rate approximate solution with di�erent parameters.
Numerous approaches are employed to �nd a solution
to linear ow problems. In the case of analytical
technique, an analysis approach (Optimal Homotopy
Analysis Method (OHAM)) captures a solution to non-
linear ow problems involving Boundary Conditions
(BCs). Recently, the OHAM approach has been
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adopted by Marinca et al. [35], with few relevant stud-
ies on algorithm being accessible in [36{39]. Makinde
and Animasaun [40] proposed a new bouncy induced
procedure for nanoparticles and considered volume
fraction by causing variations in thermal conductivity
for this ow problem while solving the ow problem
by the (RK4SM) approach. Makinde and Animasaun
[41] investigated the phenomenon of ow in terms of
Brownian motion, bouncy force, and bio-convection
through parabolic surface with microorganisms. Mu-
tuku and Makinde [42] discussed the characteristics of
bio-convection subject to hydro-magnetics considering
nanoparticles. Khan et al. [43] explored lesser known
aspects of gyrotactic microorganisms with nanoparti-
cles and their impact on the transport of mass species
and heat energy in the magnetic �eld. Makinde
et al. [44] developed a ow model upon taking into
account the inuence of radiations, chemical reaction,
Brownian motion, and magnetic force over vertical
plate. The latest important contributions dealing with
the ow problems were made and reported in [45{47].

This paper aims to delve into the phenomenon
of ow emphasizing electrical conducting of Carreau
rheological uid with nanoparticles and gyrostatic mi-
croorganisms through heated cones. The system of Or-
dinary Di�erential Equations (ODEs) was derived from
the system of Partial Di�erential Equations (PDEs)
using Von-Karman transformations and the approach
of OHAM analysis. This study is structured as follows:
after presented a literature review, the mathematical
formulation is developed in Section 2. The formulation
of ow problem and numerical solution are captured in
Sections 3 and 4, respectively. The key points regarding
ow problem are added in Section 5. In the end,
references are listed.

2. Mathematical formulation and uid
rheology

In this analysis, we have considered the ow of elec-
trically conducting uids including two-dimensional
time-independent incompressible Carreau uid and
nanoparticles with motile gyrotactic microorganisms,
as induced by a rotating disk. The magnetic �eld
strength (B0) on a boundary layer acts along the z-
direction, while the motion of uid particles is gen-
erated by the movement of wall velocity us(= rl0)
where (l0) is a constant. Geometrical ow under the
current assumption is captured and given in Figure 1.
The e�ect of induced magnetic �eld is not taken
into account, but the features of thermophoresis and
ambient motion are observed. The angular velocity
(
1) represents the rotational velocity of a rotating disk
involving viscous dissipation. The velocity components
are based on directions of (r; �; z). Initially, a disk is
heated at (T0) temperature, after which it adapts to

Figure 1. Fluid ow geometry.

and takes ambient temperature (T1). Bio-convective
patterns are detected based on the movement of motile
microorganisms from higher areas to lower regions.
The concentrations of reference and ambient microor-
ganisms are taken by n0 and n1, respectively. The
stress tensor [1] is expressed as follows:
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where n is the power law index. It was estimated that
Carreau rheology would become (0 < n < 1) shear
thinning and (n > 1) shear thickening. Governing
laws under motile microorganism and nanomaterial are
handled in the following equations:
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where V is velocity. u1; v1; w1 are ow components; P
is pressure; �f is uid density; T is temperature; ��
is thermal di�usivity, C is concentration, Dt; Db are
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thermophoretic di�usion and Brownian numbers; and
J� is microorganisms ux.

J� = nV + n � V̂ �Dmrn;

V̂ =
�
bWc

�C

�
rC:

The above equations after the boundary layer approx-
imations are expressed as follows:
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2.1. Boundary conditions
The BCs subjected to uid ow are captured as follows:

u1 = us = l0r; v1 = r
1; w1 = 0;

T = T0; n = n0; C = C0; at z = 0;

T ! T1; v1 = u1 ! 0; n! n1;

C ! C1; at z !1: (9)

2.2. Similarity analysis
The transformations called selection of Von-Karman
are expressed as follows:

u1 = (
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The set of dimensionless ODEs is generated as follows:
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�00 � Sc�0H + Pe [�00 (� � 
) + �0�0] = 0: (16)

BCs regarding the ow problem are developed as
follows:

At � = 0; H = 0; �2St = H 0; g = 1;

�=1; � = 1; � = 1:

At � !1; H 0=0; g=0; �=0;

�=0; �=0: (17)

The inuential dimensionless parameters are listed as
follows:
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2
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where �1 is Carreau uid, M Hartmann, Nt ther-
mophoresis motion, Sc Schmidt number, St stretching
rate, Pr Prandtl, Re local Reynolds, Pe bio-convection
Peclet, and Nb Brownian motion numbers.

2.3. Gradient velocity and ux numbers
The gradient velocity (Cf ), Nusselt (Nur), Sherwood
and mot��le microorganisms (Nnr) numbers are formu-
lated as follows:

Cf =
p
�rz + �r�
�f (r
1)2 ; Nur =

rq1

k (T0 � T1)
; (19)

Shr =
rq2

Db (C1 � C0)
; Nnr =

rq3

Dm (n1 � n0)
;
(20)

�rzjz=0 =
@u1

@z
�024 1+ (n�1)
2 �2

n�@v1
@z

�2+
�@u1
@z

�2o+
(n�1) (n�3)

8 �4
n�@v1

@z

�4+
�@u1
@z

�4+2
�@v1
@z

@u1
@z

�2o 35 ;
(21)

��zjz=0 =
@v1

@z
�024 1+ (n�1)
2 �2

n�@v1
@z

�2+
�@u1
@z

�2o+
(n�1) (n�3)

8 �4
n�@v1

@z

�4+
�@u1
@z

�4+2
�@v1
@z

@u1
@z

�2o 35 ;
(22)

q1 =
�����k@T@z ����z=0

;

q2 =
�����Db

@C
@z

����
z�0

;

q3 =
�����Dm

@n
@z

����
z=0

: (23)

Through relations, gradient velocity (Cf ), Nusselt
(Nu1r), Sherwood and mot��le microorganisms (Nnr)
numbers resulting from the dimensionless form are as
follows:

Re
1
2 (Cf )=

�
g02+f 02

�1=2�1+�1Re
�
g0g0+f 02

��n�1
2 ;

Nu1rRe�
1
2 = ��0 (0) ;

ShrRe�
1
2 = ��0 (0) ; NnrRe�

1
2 = ��0 (0) : (24)

3. Solution analysis and physical description

The present section captures the role of uid ow,
heat energy, and mass species curves versus di�erent
parameters such as Carreau (�1), Hartmann (M),
Prandtl (Pr), thermophoresis motion (Nt), Brownian
motion (Nb), bioconvective Peclet (Pe), and power-
law index (n) numbers. Figures 2{19 are sketched by
applying OHAM using Mathematica 10.0. Bar charts
(Figures 18{21) and numerical values in tabular forms
(Tables 1{4) of di�erent parameters are analyzed for
gradient velocity (Cf ), rate of heat energy transfer
(Nur), Sherwood number (Shr), and motile microor-
ganisms (Nnr).

Figure 2. Character of n regarding f(�).

Figure 3. Character of M regarding f(�).
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Figure 4. Character of �1 regarding f(�).

Figure 5. Character of n regarding H(�).

Figure 6. Character of M regarding H(�).

Figure 7. Character of �1 regarding H(�).

Figure 8. Character of n regarding g(�).

Figure 9. Character of M regarding g(�).

Figure 10. Character of �1 regarding g(�).

Figure 11. Character of Nb regarding �(�).
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Figure 12. Character of Pr regarding �(�).

Figure 13. Character of Nt regarding �(�).

Figure 14. Character of Pr regarding '(�).

Figure 15. Character of Nb regarding '(�).

Figure 16. Character of Pe regarding �(�).

Figure 17. Character of 
 regarding �(�).

Figure 18. Bar chart of Cf (�).

Figure 19. Bar chart of Nur(�).

The impact of n on uid ow is discussed and
given in Figure 2. According to n > 1, the uid acts
as a shear thickening behavior since f(�) decreases. In
Figure 3, at large values of (M) ow declines due to the
enhancement of Lorentz force and generation of greater
resistance in uid ow particles. Similarly, Figure 4
shows the decreasing behavior for f(�) following the
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Figure 20. Bar chart of Nnr(�).

Figure 21. Bar chart of Nnr(�).

Table 1. Numerical values of skin friction coe�cient

Re
1
2Cf (0) when St = 0:09, �1 = 0:9, Re = 1:2, Pr = 6:7,

Nt = 0:1, Sc = 1:2, 
 = 0:2, Pe = 0:7, Nb = 0:3.

M n �1 Re Re
1
2Cf

1
10 01 5

10
9
10 0.423187

2
10 { { { 0.500069
3
10 { { { 0.572402
4
10 { { { 0.640583
1
10 02 5

10
9
10 0.429413

2
10 { { { 0.504486
3
10 { { { 0.576577
4
10 { { { 0.645889
1 01 5

10
9
10 0.981269

15
10 { { { 1.20359
2 { { { 1.39237
25
10 { { { 1.55897
1 02 5

10
9
10 1.01159

15
10 { { { 1.26546
2 { { { 1.49019
25
10 { { { 1.69825

escalation of Carreau parameter (�1). Figure 5 indi-
cates that H(�) velocity slows down versus large values
of n due to the shear thickening uid. Similar types of
behavior are given in Figure 6 against the values of M ,
while uid particles decay because of resistive force and
the motion uid particles slow down. Figure 7 reveals

Table 2. Numerical study of Nusselt number Re�
1
2Nur

when n = 2:9, �1 = 0:9, Re = 1:2, 
 = 0:2, M = 2:02,
Pe = 0:5, St = 0:3.

Nb Nt Sc Pr Re�
1
2 Nur(0)

0.1 0.1 1.0 6.4 0.480056

0.2 { { { 0.463862

0.3 { { { 0.448108

0.4 { { { 0.432789

0.1 0.2 1.0 6.4 0.467692

0.2 { { { 0.451871

0.3 { { { 0.436486

0.4 { { { 0.421534

Table 3. Numerical results with respect to Sherwood

number Re�
1
2 Shr when St = 0:09, M = 2:02, �1 = 0:9,

Re = 1:2, 
 = 0:2, Pe = 0:7.

Nb Nt Sc Pr Re�
1
2 Sur(0)

0.1 0.1 1.0 6.4 0.015659

0.2 { { { {0.145346

0.3 { { { {0.198932

0.4 { { { {0.225441

0.1 0.2 1.0 6.4 {0.298010

0.2 { { { {0.011591

0.3 { { { {0.114436

0.4 { { { {0.165596

Table 4. Numerical study for Re�
1
2Nnr(0) when

St = 0:09, M = 2:02, �1 = 0:9, Re = 1:2, Nt = 0:1,
Pr = 6:7, Nb = 0:3.

Pe Sc 
 Re�
1
2Nnr(0)

0.1 0.5 0.2 0.32443

0.2 { { 0.310349

0.3 { { 0.296544

0.4 { { 0.283021

0.1 1.0 { 0.340332

0.2 { { 0.325989

0.3 { { 0.311915

0.4 { { 0.298117

the characteristics and e�ects of �1 on ow H(�). It
can be measured that increase in �1 points to the
attenuation of ow phenomenon H(�). The impact of
n on ow H(�) is estimated in Figure 8. In this �gure,
the uid ow is shown to be increasing for n resulting
from n < 1. The velocity of uid g(�) decreases due
to the increasing values of intensity of M . According
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to Figure 9, it is examined that uid ow accelerates
against the large values of Carreau liquid, as can be
implied from Figure 10.

Increase in the value of Nb and the subsequent
heat energy pro�le �(�) outcome are given in Figure 11.
It was found that heat energy curves �(�) increased
because of the increment of Nb in uid particle motion.
Temperature pro�le �(�) boosts up gradually due to
collision between particles. Thermal Boundary Layer
(TBL) is reduced upon increasing the values of Pr.
Consequently, uid temperature �(�) diminishes, as
can be shown in Figure 12. The temperature is
enhanced because high thermophoresis parameter is
Nt. In thermophoresis, the heat from the uid is
reduced and thermal energy increases. The e�ects ofNt
on thermal energy curves �(�) are given in Figure 13.
Concentration pro�le of nanoparticles '(�) increases
due to the enhancement of momentum di�usivity.
Behavior of these parameters with respect to '(�) is
shown in Figure 14. Brownian motion parameter (Nb)
exhibits the increasing tendency of mass species pro�le
'(�) (see Figure 15) and the concentration decreases
due to the enhancement of random motion of particles
and kinetic energy versus higher Nb. Upon increase
in Pe, the speed of cells of swimming microorganisms
increased. Through the pattern concentration of motile
microorganisms, �(�) in a moving disk increases. The
graphical impact of Pe on the concentration of mi-
croorganisms �(�) is depicted in Figure 16. The e�ect
of di�erence in microorganism concentration on the
concentration of motile microorganisms is depicted in
Figure 17. To enhance the concentration di�erence (
),
the concentration of motile microorganisms increases
for ambient uid and, yet, declines on the surface
of �(�). Figure 18 shows the bar chart for gradient
velocity with di�erent values of Hartmann number
(M). The �gure points to the increase in values of
M due to high resistance between the uid particles
near the surface. Bar charts for both Nur and Shr
show the opposite e�ect of di�erent active values of
Nb according to Figures 19 and 20, respectively. To
enhance the values of Nb and facilitate the transport
of conductive thermal energy, heat is generated due to
the di�usion of nanoparticles which reduces Nur while
increasing Shr. Similarly, the bar chart for Nnr is
plotted related to active parameter Pe in Figure 21.
The numerical results regarding gradient velocity are
evaluated in Table 1. According to this table, the
gradient velocity reduces due to large magnetic values
and enhancement of resistance to friction. Further,
the rate of heat transport is reduced versus values
of (Nb) and (Nt), whereas the rate of transport of
specie sis also reduced because of (Nb) and (Nt) as
can be observed in Table 2. Table 3 discusses the
comportment of numerous inuential parameters with
respect to the rate of mass transportation. Table 4

exhibits the decreasing behavior of density of gyrotactic
microorganisms at large values of Pe.

4. Key �ndings of performed analysis

This study investigated the transfer of thermal energy
in a di�erent light and conducted a solubility analysis
for the magnetohydrodynamic ow of Carreau rhe-
ology with nanoparticles and motile microorganisms
via heated disk. OHAM was applied to capture the
analytic solution of uid ow phenomenon. The char-
acteristics of the impacts of parameters on ow, heat
energy, concentration of motile microorganisms, and
nanomaterial observations were conducted graphically.
The valuable observation is summarized as follows:

� Increasing the values of (n) had an inverse role
in uid ow due to shear thickening and shear
thinning;

� Escalating values of Hartmann and Carreau uid
numbers reduced uid ow;

� Prandtl and Brownian motion numbers had the
opposite e�ect on uid temperature;

� Large values of Prandtl number reduced thermal
energy �eld and connected layer;

� The maximum heat was generated upon increas-
ing values of thermophoresis and Brownian motion
numbers;

� Enhancement of numerical values of Nb results
slowed down the transport of mass species;

� The transport rate for mass species also increased
compared to the large values of Prandtl number;

� �(�) decayed due to the di�erence in the concen-
tration of microorganisms (
) and enhancement of
Peclet number (Pe);

� The gradient velocity increased as opposed to the
increased values of Hartmann number;

� Large values (Nb) led to a reduction in heat energy
(Nur) and transport of species accelerated due to
large values of Nb;

� Augmenting values of Peclet number reduced the
density number.
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