References
[1] Duda, R. O., & Hart, P. E. “Pattern classification and scene analysis” (Vol. 3). New York: Wiley (1973).
[2] Gallegos, M. T., & Ritter, G. “Probabilistic clustering via Pareto solutions and significance tests. Advances in Data Analysis and Classification”, 12(2), pp. 179-202 (2018).
[3] Bezdek, J. C. “Pattern recognition with fuzzy objective function algorithms”, Springer Science & Business Media (2013).
[4] Krishnapuram, R., & Keller, J. M. “A possibilistic approach to clustering”, IEEE transactions on fuzzy systems, 1(2), pp. 98-110 (1993).
[5] Mendel, J. M. “Type-2 fuzzy sets. In Uncertain Rule-Based Fuzzy Systems”, pp. 259-306, Springer, Cham (2017).
[6] Sotudian, S., Zarandi, M.F. and Turksen, I.B.” From Type-I to Type-II fuzzy system modeling for diagnosis of hepatitis”, World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng, 10(7), pp.1238-1246 (2016).
[7] Haldar, N. A. H., Khan, F. A., Ali, A. et al. “Arrhythmia classification using Mahalanobis distance based improved Fuzzy C-Means clustering for mobile health monitoring systems”, Neurocomputing, 220, pp. 221-235, (2017).
[8] Zarandi, MH Fazel, A. Seifi, H. Esmaeeli et al. “A type-2 fuzzy hybrid expert system for commercial burglary”, In North American Fuzzy Information Processing Society Annual Conference, pp. 41-51 (2017).
[9] Fazel Zarandi, M. H., Faraji, M. R., and Karbasian, M. “An exponential cluster validity index for fuzzy clustering with crisp and fuzzy data”, Sci. Iran. Trans. E Ind. Eng, 17, pp. 95-110 (2010).
[10] Wu, K.L., Yang, M.S. “Alternative c-means clustering algorithms”, Pattern Recognition, 35, pp. 2267–2278 (2002).
[11] Dunn, J. C. “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters”, pp. 32-57 (1973).
[12] Krishnapuram, R., and Keller, J. M. “The possibilistic c-means algorithm: insights and recommendations’, IEEE transactions on Fuzzy Systems, 4(3), pp. 385-393 (1996).
[13] Pal, N. R., Pal, K., and Bezdek, J. C. “A mixed c-means clustering model. In Fuzzy Systems”, Proceedings of 6th International Fuzzy Systems IEEE, 1, pp. 11-21 (1997).
[14] Wang, W., and Zhang, Y. “On fuzzy cluster validity indices”, Fuzzy sets and systems, 158(19), pp. 2095-2117 (2007).
[15] Bezdek, J. C., Keller, J., Krisnapuram, R. et al. “Fuzzy models and algorithms for pattern recognition and image processing”, Springer Science and Business Media, (2006).
[16] Wijayasekara, D., Linda, O., and Manic, M. “Shadowed Type-2 Fuzzy Logic Systems”, In T2FUZZ , pp. 15-22 (2013).
[17] Fukuyama, Y., and Sugeno, M. “A new method of choosing the number of clusters for the fuzzy c-means method”, In Proc. 5th Fuzzy Syst. Symp, (247), pp. 247-250 (1989).
[18] Xie, X. L., and Beni, G. “A validity measure for fuzzy clustering”, IEEE Transactions on pattern analysis and machine intelligence, 13(8), pp. 841-847(1991).
[19] Kwon, S.H. “Cluster validity index for fuzzy clustering”, Electron Lett., 34(22), pp. 2176-2178 (1998).
[20] Gath, I., and Geva, A. B. “Unsupervised optimal fuzzy clustering”, IEEE Transactions on pattern analysis and machine intelligence, 11(7), pp. 773-780 (1989).
[21] Wu, K. L., & Yang, M. S. “A cluster validity index for fuzzy clustering”, Pattern Recognition Letters, 26(9), pp. 1275-1291(2005).
[22] Zhang, Y., Wang, W., Zhang, X. et al. “A cluster validity index for fuzzy clustering”, Information Sciences, 178(4), pp. 1205-1218 (2008).
[23] Rezaee, B “A cluster validity index for fuzzy clustering”, Fuzzy Sets and Systems, 161(23), pp. 3014-3025 (2010).
[24] Zhang, D., Ji, M., Yang, J. et al. “A novel cluster validity index for fuzzy clustering based on bipartite modularity”, Fuzzy Sets and Systems, 253, pp. 122-137 (2014).
[25] Zarandi, M. H. F., Neshat, E., and Türkşen, I. B. “Retracted Article: A New Cluster Validity Index for Fuzzy Clustering Based on Similarity Measure”, In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing,Springer, Berlin, Heidelberg, pp. 127-135 (2007).
[26] Askari, S., Montazerin, N., & Zarandi, M. F. “Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data”, Applied Soft Computing, 53, pp. 262-283 (2017).
[27] Pal, N. R., and Pal, S. K. “Entropy: A new definition and its applications”, IEEE transactions on systems, man, and cybernetics, 21(5), pp. 1260-1270 (1991).
[28] Pal, N. R., and Pal, S. K. “Some properties of the exponential entropy”, Information sciences, 66(1-2), pp. 119-137(1992).
[29] Bezdek, J. C. “Pattern Recognition with Fuzzy Objective Algorithms”, Plenum Press, New York. (1981).
[30] McBratney, A. B., and Moore, A. W. “Application of fuzzy sets to climatic classification”, Agricultural and forest meteorology, 35(1-4), pp. 165-185 (1985).
[31] Choe, H., and Jordan, J. B. “On the optimal choice of parameters in a fuzzy c-means algorithm”, IEEE International Conference on Fuzzy Systems, pp. 349-354 (1992).
[32] Yu, J., Cheng, Q., and Huang, H. “Analysis of the weighting exponent in the FCM”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), pp. 634-639 (2004).
[33] Okeke, F., and Karnieli, A. “Linear mixture model approach for selecting fuzzy exponent value in fuzzy c-means algorithm”, Ecological Informatics, 1(1), pp. 117-124 (2006).
[34] Bezdek, J.C. “Pattern Recognition in Handbook of Fuzzy Computation”, IOP Publishing Ltd., Boston, MA, (1998),
[36] Torshizi, A. D., Zarandi, M. F., and Türksen, I. B. “Computing centroid of general type-2 fuzzy set using constrained switching algorithm”, Scientia Iranica, Transaction E, Industrial Engineering, 22(6), p 2664 (2015).
[37] Jothi, R., Sraban Kumar Mohanty, and Aparajita Ojha. "DK-means: a deterministic K-means clustering algorithm for gene expression analysis", Pattern Analysis and Applications, pp. 1-19 (2017).
[38] Hosseini, Behrooz, and Kourosh Kiani. "FWCMR: A scalable and robust fuzzy weighted clustering based on MapReduce with application to microarray gene expression", Expert Systems with Applications 91, pp. 198-210 (2018).
[39] Jiang, Daxin, Chun Tang, and Aidong Zhang. "Cluster analysis for gene expression data: a survey", IEEE Transactions on knowledge and data engineering. 16(11), pp. 1370-1386 (2004).
[42] Biological Data Analysis using Clustering. (n.d.). Retrieved October 21, 2018, from http://homes.esat.kuleuven.be/~thijs Work/Clustering.html
[43] Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. “Cluster analysis and display of genome-wide expression patterns”, Proceedings of the National Academy of Sciences, 95(25), pp. 14863-14868 (1998).
[44] Open-edit radiology resource, Retrieved October 21, 2018, from http:// Radiopaedia.org.