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Abstract. In some complicated datasets, due to the existence of noisy data points and
outliers, cluster validity indices can yield con
icting results in terms of determining the
optimal number of clusters. This paper presents a new validity index for fuzzy-possibilistic
C-means clustering called Fuzzy-Possibilistic (FP) index, which works well in the presence
of clusters that vary in shape and density. Moreover, like most of the clustering algorithms,
Fuzzy-Possibilistic C-Means (FPCM) is susceptible to some initial parameters. In this
regard, in addition to the number of clusters, FPCM requires a priori selection of the
degree of fuzziness (m) and the degree of typicality (�). Therefore, an e�cient procedure
was presented for determining optimal values of m and �. The proposed approach is
evaluated using several synthetic and real-world datasets. Final computational results
demonstrate the capabilities and reliability of the proposed approach compared with several
well-known fuzzy validity indices in the literature. Furthermore, to clarify the ability of the
proposed method in real applications, the proposed method is implemented in microarray
gene expression data clustering and medical image segmentation.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Clustering is an unsupervised pattern classi�cation
method that determines the intrinsic grouping in a set
of unlabeled data. There are a large number of algo-
rithms for clustering based on crisp [1], probabilistic [2],
fuzzy [3], and possibilistic methods [4]. Hard-clustering
methods limit each point of a dataset to exactly one
cluster. However, since Zadeh introduced the notion
of fuzzy sets which produced the idea of allowing for
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membership functions to exist in all clusters [5], fuzzy
clustering has been extensively applied to various �elds
of science such as engineering and medical sciences [6{
8].

In clustering algorithms, there are no prede�ned
classes; as a result, we need to determine the optimal
or near-optimal number of clusters before clustering.
In this regard, compactness and separation are two
measures of clustering assessment and selection of an
optimal clustering scheme [9]. The closeness of cluster
elements represents compactness, while isolation be-
tween clusters indicates separation.

So far, a considerable number of validity indices
have been developed to evaluate the clustering quality
(see Section 2). In these approaches, to �nd the
optimal or near-optimal number of clusters, clustering
algorithms should be executed several times for each
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cluster number and its outputs be implemented into
the cluster validity index in order to �nd the optimal
or near-optimal number of clusters. Thus, to achieve
an optimal prototype using a validity index, two
conditions are unavoidable:

1. An algorithm that can �nd the best initial param-
eters of the clustering algorithm;

2. A validity function for assessing the worthiness of
cluster schemes for various clusters.

Once these two necessities are met, the strategy of
�nding an optimal number of clusters becomes straight-
forward, i.e., determining the best initial parameters
and using the validity function to choose the best
number of clusters.

All clustering algorithms are susceptible to some
initial parameters. For example, Fuzzy C-Means
(FCM) may give various clustering results with di�er-
ent degrees of fuzziness. Therefore, even though the
number of clusters is given, these algorithms may yield
di�erent results for the optimal number of clusters.
In the current study, we use Fuzzy-Possibilistic C-
Means (FPCM) clustering instead of FCM and its
fuzzy counterparts and discuss the reason for this
shortly. Therefore, to satisfy the �rst condition, a new
algorithm is proposed for determining the best initial
parameters of FPCM clustering including the degree of
fuzziness (m) and typicality (�). Firstly, the algorithm
reconstructs the original dataset from the outputs of
the FPCM algorithm for di�erent values of m; � and
the number of clusters. Then, the di�erences between
the predicted dataset and the original dataset are
determined using Root Mean Squared Error (RMSE).
Finally, the best values of � and m are obtained by
minimizing the Cumulative Root Mean Square Error
(CRMSE) for every pair of (m; �).

In the second condition, a novel validity index is
proposed for FPCM clustering called FP index. The
major di�culty in measuring the compactness of a va-
lidity index is the signi�cant variability in the density,
shape, and number of patterns in each cluster. To
solve this problem, we assess the dispersion of the data
for each cluster and consider the shape and density of
clusters using the properties of the Fuzzy-Possibilistic
(FP) covariance matrix as a measure of compactness.
Also, the essential characteristic of a validity index is
its capability to handle noise and outliers. Since FCM
and cluster validity indices designed on its basis are
quite susceptible to noise, we use FPCM instead of
FCM and its fuzzy counterparts. Moreover, an FP
exponential-type separation is used in the separation
part of the proposed FP index because an exponential
operation is extremely e�ective in dealing with Shan-
non entropy [10].

The proposed framework is one of the very �rst
FP approaches in the literature. In the forthcoming

sections, upon using arti�cial and well-known datasets,
capabilities of the proposed approach will be tested and
then, it will be implemented for clustering several real
microarray datasets and medical images.

The remainder of this paper is organized as
follows. The next section reviews several cluster
validity indices and also discusses their advantages and
disadvantages. A new cluster validity index is then
proposed for FP clustering in Section 3. A method for
determining the parameters of the proposed index is
presented in Section 4. Section 5 gives the comparisons
of experimental results for a variety of datasets and the
proposed method will be implemented in microarray
gene expression data clustering and medical image
segmentation. Finally, conclusions are presented in
Section 6.

2. Background

2.1. Fuzzy-possibilistic C-Means (FPCM)
clustering

FCM clustering and its variations are the most
renowned methods in the literature. FCM was �rst
proposed by Dunn [11] and then, generalized by Bezdek
[3]. A disadvantage of the FCM clustering algorithm is
that it is susceptible to noise. To attenuate this e�ect,
Krishnapuram and Keller eliminated the membership
constraint in FCM and proposed the Possibilistic C-
Means (PCM) algorithm [4]. The superiority of PCM
is that it is extremely robust in the presence of outliers.
However, PCM has several defects, i.e., it considerably
relies on good initialization and has an undesirable
propensity to generate coincident clusters [12].

To address these shortcomings, Pal and Bezdek
de�ned FPCM clustering that merges the attributes
of both FCM and PCM. FPCM overcomes the noise
susceptibility of FCM and also resolves the coinci-
dent clusters problem of PCM. They believed that
typicalities and memberships were indispensable for
de�ning the accuracy feature of data substructure in
the clustering problem. In this regard, they de�ned
the objective function of FPCM as follows [13]:

min
(U; T; V;X)

�
JFPCM (U; T; V;X)

=
cX
i=1

NX
j=1

(t�ij + umij )D
2(xj ; vi)

�
; (1)

with the following constraints:8>>>><>>>>:
cP
i=1

uij = 1 8j 2 (1; 2; :::; N)

NP
j=1

t�ij = 1 8i 2 (1; 2; :::; c)

(2)
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where X = fx1 ; x2 ; ::: ; xNg � Rd is the dataset in
the d-dimensional vector space, uij is the degree of
belonging of the jth data to the ith cluster, V =
fv1; v2; :::; vcg is the prototype of clusters, D (xi; vi)
is the distance between the jth data and the ith
cluster center, m is the degree of fuzziness, tij is the
typicality, and U and T are fuzzy and possibilistic
partition matrices, respectively. � is a suitable positive
number, c is the number of clusters, and N is the
number of data. This objective function can be solved
through an iterative procedure in which the degrees of
membership, typicality, and cluster centers are updated
via [13]:

uij =

0@ cX
k=1

�
D (xj ; vi)
D (xj ; vk)

�2/(m� 1)
1A�1

;

1 � i � c; 1 � j � N (3)

tij =

0@ NX
k=1

�
D (xj ; vi)
D (xj ; vk)

�2/(� � 1)
1A�1

;

1 � i � c; 1 � j � N; (4)

vi =

NP
k=1

(t�ik + umik)xk

NP
k=1

(t�ik + umik)
; 1 � i � c: (5)

2.2. Validity indices for fuzzy clustering
In this subsection, some methods are employed for
quantitative assessment of the clustering results, known
as cluster validity methods. According to the work of
Wang and Zhang [14], these methods can be grouped
into three main categories:

1. Indices comprising only the membership values;
2. Indices comprising the membership values and

dataset;
3. Other approaches.

The earliest validity indices for fuzzy clustering, the
partition coe�cient VPC, and the partition entropy
VPE were introduced by Bezdek [15]. These indices
are examples of the indices comprising only the mem-
bership values. Their essential drawback is the lack
of any connection to the geometrical structure [14].
Some researchers have considered fuzzy memberships
and the data structure to resolve this disadvantage. In
the current paper, we compare the performance of the
proposed validity index with those of �fteen popular
cluster validation indices in the literature. Table 1 lists
these cluster validity indices. In this table, xi is the jth
data point, c is the number of clusters, vi's are cluster
centers, uij is the degree of belonging of the jth data to

the ith cluster, and N is the total number of patterns
in a given dataset. The last three indices in this table
are based on the general type-2 fuzzy logic. Higher-
order fuzzy clustering algorithms are very well suited
to dealing with high levels of uncertainties present
in a majority of real-world applications. However,
the immense computational complexity associated with
such clustering algorithms has been a great obstacle to
the practical applications [16].

Now, we focus our attention on a well-known
index from the second category, which is the Parti-
tion Coe�cient And Exponential Separation (PCAES)
index proposed by Wu and Yang [21]. VPCAES only
utilizes membership values to validate the compactness
measure and does not consider the structure of data,
i.e., the relative distance between objects and cluster
centers [9]. For this reason, it performed poorly in
compactness measure. In order to solve this problem,
we use the FP covariance matrix and membership
values in the proposed compactness measure. In this
way, we involve characteristics like density, shape, and
patterns in the proposed index.

Moreover, VPCAES takes advantage of the expo-
nential function to validate the separation measure
and, also, it involves the distance between the mean
of cluster centers and cluster centers. The stimulus
behind taking the exponential function is that an
exponential operation is extremely e�ective in coping
with Shannon entropy [27,28]; Wu and Yang asserted
that an exponential-type distance would yield a ro-
bust property. Nevertheless, the experimental results
demonstrate that this index produces inappropriate
results when the cluster centers are close to each
other [9]. Figure 1 illustrates an example of limited
scope in which VPCAES loses its capability to indicate
the appropriate number of clusters. Intuitively, we
know that there are 7 fuzzy clusters in this dataset.
In Section 4, it is demonstrated that VPCAES will
detect four clusters. This problem occurs because
VPCAES calculates the separation between clusters
using only centroid distances. To solve these problems
in the proposed index, membership values and centroid

Figure 1. (a) A dataset that consists of seven clusters.
(b) The result of Partition Coe�cient And Exponential
Separation (PCAES) validity index.
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Table 1. Fifteen well-known validity indices for fuzzy clustering.

Name/authors Function Ref.

Partition Coe�cient max
2�c�Cmax

VPE (U; V;X) = 1
n

cP
i=1

NP
j=1

u2
ij [15]

Partition Entropy min
2�c�Cmax

VPE (U; V;X) = � 1
n

cP
i=1

NP
j=1

uij log uij [15]

Fukuyama and Sugeno
max

2�c�Cmax
VFS(U; V;X) =

Pc
i=1
PN
j=1 u

m
ij k xj � vi k2 �Pc

i=1
PN
j=1 u

m
ij k vi � �v k2

�v =
P
vi
c

[17]

Xie and Beni min
2�c�Cmax

VXB (U; V;X) =
Pc
i=1

PN
j=1 u

m
ijkxj�vik2

N:min
i;j
kvi��vk2 [18]

Kwon
min

2�c�Cmax
VK (U; V;X) =

Pc
i=1

PN
j=1 u

2
ijkxj�vik2+ 1

c
Pc
i=1 kvi��vk2

min
i 6=kkvi�vkk2

,

�v =
PN
j=1 xj
N

[19]

Gath and Geva
min

2�c�Cmax
VFHV (U; V;X) =

cP
i=1

[det (Fi)]
1
2

Fi =
PN
j=1 (umij)(xi�vi)(xj� vi)TPN

j=1 (umij)

[20]

Wu and Yang
max

2�c�Cmax
VPCAES (U; V;X) =

cP
i=1

NP
j=1

uij2

uM
� cP
i=1

exp
�
�min

i6=k
n kvi�vkk2

BT

o�
uM = min

1�i�c
�PN

j=1 u
m
ij

�
; BT =

Pc
s=1

kvs��vk2
c ; �v =

PN
j=1

xj
N

[21]

Zhang et al.

min
2�c�Cmax

VW (U; V ) = V arN (U;V )
SepN (c;V )

V arN (U; V ) = V ar (U; V ) =max
c

(V ar (U; V ))

SepN (U; V ) = Sep (c; V ) =max
c

(sep (c; V ))

Sep (c; V ) = 1�max
i 6=j

�
max
xk2X

min (uik; ujk)
�

V ar (U; V ) =

 
cP
i=1

NP
j=1

uijd2 (xj ; vi) =n (i)

!
� � c+1

c�1

�1=2

[22]

Rezaee

min
2�c�Cmax

VSC (c; U) = SepN (c; U) + CompN (c; U)

CompN (c; U) = Comp (c; U) =max
c

(Comp (c; U))

SepN (c; U) = Sep (c; U) =max
c

(Sep (c; U))

Comp (c; U) =
cP
i=1

NP
j=1

u2
ij k xj � vi k2

Sep (c; U) = 2
c(c�1)

cP
p6=q

"
NP
j=1

�
min

�
uFp (xj) ; uFq (xj)

��� h (xj)

#
h (xj) = � cP

i=1
uFp (xj) loga uFq (xj)

[23]

Zhang et al.

max
2�c�Cmax

VWGLI = (2MMD +QB) =3

MMD = 1
n

PN
j=1 max

1�i�c uij QB =
P
i (eij � aiaj) j = max

k
(eik)

ai =
P
i
eij = 1

2M

P
i2Vl

P
j2V

A (i; j)

A is the adjacency matrix and M is the number of edges in a bipartite network.

[24]

Fazel Zarandi et al.

max
2�c�Cmax

VECAS (c) = ECcomp(c)
max
c (ECcomp(c)) � ESsep(c)

max
c (ESsep(c))

ECcomp (c) =
cP
i=1

NP
j=1

umij exp
��� kxj�vik2�comp

+ 1
c+1

��
�comp =

PN
k=1 kxk��vk2

n(i)

�v =
PN
j=1

xj
N n(i) is the number of data in cluster i

ESsep (c) =
cP
i=1

exp
�
�min

i6=j
n

(c�1)kvi�vjk2
�sep

o�
�comp =

Pc
b=1 kvb��vk2

c

[9]
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Table 1. Fifteen well-known validity indices for fuzzy clustering (continued).

Name/authors Function Ref.

Fazel Zarandi et al.
max

2�c�Cmax
VFNT (U; V;X) = 2

c(c�1)

cP
p6=q

Srel (Ap; Aq)

Srel (Ap; Aq) is the relative similarity between two fuzzy sets Ap and Aq.
[25]

Askari et al.
min

2�c�Cmax
VGPF1 =

cP
i=1

Rri

 s
rQ
q=1

�qi

!�1,
cP
i=1

NP
j=1

umij

�qi is qth eigenvalue of fuzzy covariance norm matrix

[26]

Askari et al. [26]

Askari et al. min
2�c�Cmax

VGPF3 =

 
c
cP
i=1

Rri

 s
rQ
q=1

�qi

!�1!,  
cP
i=1

NP
j=1

umij

! 
cP

k=1

cP
i=1

NP
j=1
jukj � uij jm

!!
[26]

Figure 2. (a) A dataset that consists of �ve clusters. (b)
Previous dataset + 100 noisy points.

distances are used to improve the separation measure.
What is more, a substantial feature of validity

index is its capability to handle noise and outliers.
Because of the noise sensitivity of FCM and the
structure of compactness measure in VPCAES, it is
very susceptible to noise. To demonstrate the noise
sensitivity of PCAES validity index, we considered a
5-cluster dataset and the optimum number of clusters
obtained using VPCAES was 5. Additionally, we added
100 noisy points to the previous dataset and due
to the noise sensitivity of VPCAES, only four well-
separated clusters could be detected in this noisy
dataset. These datasets are depicted in Figure 2. To
solve this problem in the proposed index, we use FPCM
clustering instead of FCM or PCM clustering. FPCM
clustering overcomes the noise susceptibility of FCM
and resolves the coincident clusters problem of PCM.
In the next section, we will propose a new validity
index for FPCM clustering in order to overcome these
shortcomings.

3. The proposed validity index

In the previous section, the most widely used validity
indices found in the literature were reviewed and the
disadvantages of some of these methods were explained.
Moreover, some solutions were suggested to address
these issues. Now, a new validity index is proposed
for FPCM clustering which considers di�erences in
cluster density, shape, and orientation and works well

in the presence of noise. We will demonstrate that this
validity index can e�ectively address these issues.

De�nition: Let X = fx1; x2; ::: ; xnjxi 2 <pg be an
FP c-partition of the dataset with c cluster centers vi,
such that V = fv1; v2; ::: ; vcg and uij as the fuzzy
membership of data point xj belonging to the jth
cluster and tij as typicality of data point xj belonging
to ith cluster.

The FP validity index has the following form:

VFP (U; T; V;X) = Comp (c; U; T; V;X)

+ Sep (c; U; T; V ); (6)

where Comp (c; U; T; V;X) is the compactness of the
FP c-partition which is de�ned as follows:

Comp (c; U; T; V;X) =
cX
i=1

1
trace(Fi)

NX
j=1

�
t�ij + umij

� k xj � vi k2; (7)

where m is degree of fuzziness, � is degree of typicality,
and Fi is the FP covariance matrix of the ith cluster
which is de�ned as follows:

Fi =
PN

j=1
�
t�ij + umij

� �
xj � vi

� �
xj � vi

�TPN
j=1

�
t�ij + umij

� : (8)

In the compactness part, if intra-cluster dispersion
increases, then clusters become less compact. Thus,
the sum of FP variations of clusters is an appropriate
indication of the compactness of clusters. It is worth
mentioning that Eq. (7) combines the advantages of
fuzzy and possibilistic modeling with the power of the
covariance matrix as a measure of compactness.

A signi�cant obstacle to measuring the compact-
ness is the considerable variation in the density, shape,
and number of patterns of each cluster. To resolve
this problem, we can evaluate the variation of data for
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each cluster using the attributes of the FP covariance
matrix. In general, when compactness of a cluster is
greater than that of another cluster, the trace of that
cluster covariance matrix will be less than the other.
Owing to this inverse correlation between the trace of
the cluster covariance matrix and compactness, we have
put this term in the denominator to show this inverse
correlation. Moreover, we use the trace of a matrix
instead of its determinant because the computational
complexity of computing the determinant is much
greater than the complexity of trace.

Sep (c; U; T; V ) is the FP exponential-type sepa-
ration of clusters which is de�ned as follows:

Sep (c; U; T; V ) =
cX
i=1

NX
j=1

�
t�ij + umij

�
exp

�
�min

i6=j

��k vi � vj k
k vi � �v k

�m��
;

(9)

where �v =
P
vi
c . The FP exponential-type separation

is similar to the exponential function of the separation
measure in VPCAES. According to the research con-
ducted by Wu and Yang, an exponential-type distance
is more robust based on the in
uence function analysis
[10]. Furthermore, we have combined the fuzziness
and possibility in each row of U and T with the
exponential-type separation. In Section 2, VPCAES was
found to have inappropriate results when the cluster
centers were close to each other. The experimental
results indicate that FP index can correctly determine
the number of clusters for this type of dataset (see
Section 4).

Sep (c; U; T; V ) and Comp (c; U; T; V;X) have
di�erent scales; as a result, they need to be normalized
before calculating VFP. First, we explain each of them
with respect to c = 2; 3; :::; cmax as follows:

Sep (c; U; T; V ) = fSep (2; U; T; V ) ; Sep (3; U; T; V ) ;

:::; Sep (cmax; U; T; V )g; (10)

Comp (c; U; T; V;X) = fComp (2; U; T; V;X) ;

Comp (3; U; T; V;X) ; :::;

Comp (cmax; U; T; V;X)g: (11)

For each measure, the maximum values are computed
as follows:

Sepmax = max
c

(Sep (c; U; T; V )) ; (12)

Compmax = max
c

(Comp (c; U; T; V;X)) : (13)

Then, the normalized separation and compactness can
be computed as:

SepN (c; U; T; V ) =
Sep(c; U; T; V )

Sepmax
; (14)

CompN (c; U; T; V;X)

=
Comp (c; U; T; V;X)

Compmax
: (15)

Consequently, the proposed FP cluster validity index
VFP can be rede�ned as follows:

VFP (U; T; V;X)

=CompN (c; U; T; V;X)+SepN (c; U; T; V ) : (16)

In the proposed validity index, the large values for
the compactness measure over and separation mea-
sure over c are indicative of a compact partition
and well-separated clusters, respectively. Therefore,
the optimum value of c is obtained by maximizing
VFP (U; T; V;X) over c = 2; 3; :::; cmax.

In addition, the time and space complexity of
validity indices depends on the underlying clustering
algorithms. The time complexity of FCM and FPCM
clustering algorithms is O

�
tkNn2� where t; k; n, and

N are the numbers of iterations, clusters, features, and
objects, respectively. Moreover, the space complexity
of these two algorithms is O

�
Nn+ kN + n2�. Of note,

since solving most of the common optimization formu-
lations of clustering is NP-hard (in particular, solving
the popular FCM and FPCM clustering problems),
solving validity indices is also NP-hard.

4. A procedure for determining the
parameters of the proposed method

In addition to the number of clusters, FPCM and
its di�erent extensions require a priori selection of
the degree of fuzziness (m) and degree of typicality
(�). During the past few decades, di�erent ranges and
values for the optimum degree of fuzziness have been
proposed. Here, studies that have proposed a range or a
method for determining the optimal degree of fuzziness
are brie
y reviewed. Then, an e�cient procedure for
determining optimal values for m and � is presented.
Bezdek was one of the �rst scientists who introduced
a heuristic procedure for �nding an optimum value for
m [29]. McBratney and Moore [30] observed that the
objective function value Jm decreased monotonically
upon augmenting m. Furthermore, they demonstrated
that the greatest change in Jm occurred around m = 2.
Choe and Jordan [31] proposed an algorithm to �nd the
optimum using the concept of fuzzy decision theory.
Yu et al. [32] de�ned two theoretical rules to select
the weighting exponent in the FCM. Through their
approach, they revealed the relationship between the
stability of the �xed points of the FCM and the dataset
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itself. Okeke and Karnieli [33] presented a procedure
using the output of the fuzzy clustering. Their method
predicts the original data using the idea of linear
mixture modeling. The formula for reconstructing the
original dataset has the following form:

~X = ~V ~U; (17)

where ~X is the vector of predicted dataset, ~V the vector
of the FCM output centers, and ~U the matrix of mem-
bership functions. Next, the di�erences between the
predicted and original datasets are speci�ed through
the following formula [33]:

� =k X � ~X k � > 0; 8m: (18)

Finally, the degree of fuzziness which corresponds to
the minimum value of � is the optimum value [33].
Since the values of � and m play an important role
in the FP index, an algorithm is proposed to tackle
this problem. In the proposed algorithm, the FPCM
clustering is run for di�erent values of m; �; and
c. Then, the original dataset is reconstructed from
the outputs of FPCM algorithm using the following
formulas:

~XU = ~V ~U; (19)

~XT = ~V ~TN ; (20)

where ~XU is the vector of the predicted dataset based
on the membership functions matrix, ~U the matrix
of membership functions for the FPCM algorithm,
~V the vector of the FPCM centers, ~XT the vector

of the predicted dataset based on the normalized
typicality matrix, and ~TN the normalized typicality
matrix de�ned below:

~TN (c;N) =
~T (c;N)P
c

~T (c;N)
: (21)

Then, the di�erence between the predicted and original
datasets is determined by the Root Mean Squared
Error (RMSE) as follows:

RMSE =

vuut 1
N

NX
i=1

(xi � ~xi)2; (22)

where N is the total number of samples, and xi and ~xi
are the actual and predicted data points, respectively.
In this respect, RMSETotal can be de�ned as follows:

RMSETotal = RMSET +RMSEU ; (23)

where RMSET and RMSEU are the root mean
squared errors computed by ~XT and ~XU , respectively.
Then, Cumulative Root Mean Square Error (CRMSE)
for every pair of (m; �) is de�ned as follows:

CRMSE (m; �) =
cmaxX
c=2

RMSETotal (m; �; c) ; (24)

where cmax is the maximum number of clusters. Fi-
nally, optimal values for m and � can be found by
minimizing CRMSE over � and m. The steps of the
proposed algorithm can be seen in Algorithm 1.

Algorithm 1 runs the FPCM clustering and com-
putes VFP with respect to c = 2; 3; :::; cmax. There

Algorithm 1. The proposed algorithm for determining the suitable values of c, m, and �.



2284 M.H. Fazel Zarandi et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 2277{2293

Table 2. Cumulative Root Mean Square Error (CRMSE) values for di�erent � and m.

m
� 1.2 1.6 2 2.2 2.6 3 3.4 3.8 4.2 4.4 4.6 5

1.2 6.225 6.344 6.285 6.319 6.302 6.265 6.357 6.316 6.228 6.329 6.278 6.367
1.6 6.333 6.328 6.383 6.408 6.343 6.305 6.333 6.287 6.238 6.321 6.278 6.390
2 6.350 6.343 6.281 6.340 6.307 6.314 6.310 6.351 6.336 6.357 6.363 6.294

2.2 6.316 6.190 6.338 6.252 6.381 6.405 6.597 6.342 6.322 6.316 6.281 6.421
2.6 6.313 6.307 6.346 6.440 6.341 6.331 6.239 6.244 6.254 6.338 6.330 6.313
3 6.312 6.292 6.305 6.311 6.355 6.265 6.282 6.313 6.318 6.360 6.221 6.327

3.4 6.249 6.278 6.325 6.342 6.305 6.303 6.244 6.301 6.289 6.297 6.382 6.309
3.8 6.278 6.293 6.542 6.252 6.337 6.350 6.305 6.318 6.289 6.210 6.290 6.321
4.2 6.363 6.365 6.306 6.315 6.406 6.323 6.354 6.330 6.327 6.365 6.273 6.269
4.4 6.308 6.302 6.658 6.289 6.339 6.338 6.328 6.288 6.306 6.649 6.339 6.288
4.6 6.265 6.328 6.367 6.337 6.275 6.313 6.338 6.456 6.349 6.335 6.316 6.281
5 6.287 6.263 6.313 6.298 6.322 6.292 6.354 6.347 6.358 6.292 6.277 6.421

is no universal agreement on what value to use for
cmax. The value of cmax can be determined in accor-
dance with the user's knowledge about the dataset;
however, since this is not always feasible, a lot of
researchers use cmax =

p
N instead [34]. Furthermore,

the variation in FP index values for all experimental
datasets demonstrates that the maximum value of
VFP exists between 2 and

p
N (see Section 4). In

order to exhibit the behavior of Algorithm 1, the
dataset shown in Figure 2(b) is used as the input
data. Let cmax = 8, mmax = 5, and �max = 5
be the initial values for Algorithm 1 (the theoretical
rules proposed by Yu et al. are employed to de�ne
mmax and �max). Table 2 shows the cumulative root
mean square error of this dataset. The elements of
this table are the degree of typicality (�) and degree
of fuzziness (m) considered as the input variables
and CRMSE as results. For instance, for m = 1:2,
and � = 2:2, CRMSE is 6.316. According to Table
2, the suitable values of m and � can be found by
CRMSE (m�; ��) = min

�
min
m

(CRMSE). Therefore,

the suitable values of m and � are 1.6 and 2.2,
respectively. Finally, the optimal number of clusters
obtained through Algorithm 1 is �ve with m = 1:6
and � = 2:2. Figure 3 presents the variation in the
proposed index values with the number of clusters for
this dataset.

5. Experimental results

In this section, to ascertain the e�ectiveness of FP
index, we conducted comparisons between FP index
and some well-known indices in the literature, as
reviewed in Section 2. In the next subsections, FP
index will be evaluated using several synthetic and

Figure 3. The variation in the proposed index values
with the number of clusters.

real-world datasets. Moreover, in order to clarify the
ability of the proposed method in real applications,
the proposed method is implemented in microarray
gene expression data clustering and medical image
segmentation. In the computational experiments, all
the indices are computed using the same input in order
to achieve comparable results. In this regard, the
clustering algorithm is run and then, the resulting U
matrix, the prototypes of clusters, and the other inputs
needed for the indices are used for all the indices.

5.1. Arti�cial and real-world datasets
Eight arti�cial and �ve well-known datasets
were considered for experiments. These eight
arti�cial datasets are called Dataset 2 12,
Dataset 2 5, Dataset 2 6, Dataset 2 7, Dataset 2 8,
Dataset 2 10, Dataset 3 3, and Dataset 3 4. The
names imply the number of clusters that actually
exists in the data and its dimensions. For instance, in
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Figure 4. The eight arti�cial datasets.

Dataset 2 5, there are �ve clusters and two dimensions
of the data. As observed, the arti�cial datasets
include two- and three-dimensional data where the
number of clusters varies from three to twelve.
These datasets are demonstrated in Figure 4. In
addition, six well-known datasets including Bupa Liver
Disorder, Wine, Iris, Wisconsin Breast Cancer (WBC),

Wisconsin Diagnostic Breast Cancer (WDBC), and
Mammographic mass were used in this study, all of
which were real-life datasets freely accessible at [35].
The real-world datasets are characterized by four to
thirty dimensions and the number of clusters varies
from two to three.

In this section, experiment results are presented
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Figure 5. The variation in the proposed index values with the number of clusters for all datasets.

to compare the VFP index with �fteen other indices
including VPC, VPE, VFS, VXB, VK, VFHV, VPCAES,
VW, VSC, VWGLI, VECAS, VFNT, VGPF1, VGPF2, and
VGPF3. In the proposed index, the optimum value
of c is obtained by maximizing VFP (U; T; V;X) over

c = 2; 3; ::: ; cmax. Figure 5 shows the variation of
VFP with c for all of datasets. The maximum value
of the index corresponds to the optimum number of
clusters. These values for each dataset are listed in
Figure 5. For example, the proposed VFP index reaches
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Table 3. The optimal number of clusters obtained by each cluster validity index.

Dataset C� PC PE FS XB K FHV PCAES W SC WGLI ECAS FNT GPF1 GPF2 GPF3 FP

Dataset 2 12 12 10 13 7 12 12 12 12 12 12 12 12 12 12 12 12 12

Dataset 2 5 5 4 2 5 4 4 5 4 4 4 4 4 4 4 5 5 5

Dataset 2 6 6 7 7 6 6 6 7 6 7 6 6 6 7 7 6 6 6

Dataset 2 7 7 2 2 7 6 7 7 4 7 6 7 6 6 7 7 7 7

Dataset 2 8 8 2 2 7 7 8 8 8 8 8 8 8 8 8 8 8 8

Dataset 2 10 10 10 10 5 8 5 10 5 10 10 8 10 10 10 10 10 10

Dataset 3 3 3 2 2 3 2 2 3 2 3 3 3 2 2 3 3 3 3

Dataset 3 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Liver Disorder 2 2 2 4 2 2 18 2 2 2 2 2 2 2 2 2 2

Wine 3 2 2 13 3 3 3 3 3 3 3 3 2 3 3 3 3

Iris 2,3 2 2 5 2 2 3 2 2 2 2 2 2 2 2 2 2

WBC 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2

WDBC 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2
Mammographic

mass
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

the maximum (VFP = 2) at c� = 2 for the Iris dataset,
which properly reveals the underlying cluster number.

Furthermore, Table 3 summarizes the results
obtained when the 15 di�erent validity indices were ap-
plied to the above-mentioned datasets. The column c�
in Table 3 gives the actual number of clusters for each
dataset, and other columns show the optimal cluster
numbers obtained from each index. In this table, the
highlighted entries correspond to the incorrect result of
the indices.

According to this table, the validity indices
VFP;VGPF2, and VGPF3 can correctly recognize the
correct number of clusters for all of the datasets. Of
note, the general type-2 fuzzy clustering algorithms
outperformed the type-1 fuzzy clustering algorithms in
many computational experiments [36]. This happens
mainly because a general type-2 fuzzy set o�ers a way
to model higher levels of uncertainty resulting from
additional degrees of freedom provided by its third
dimension [36]. However, the general type-2 fuzzy is
computationally much more complex than type-1 fuzzy,
particularly the defuzzi�er process which is a very
costly operation [36]. As a result, the immense com-
putational complexity associated with general type-2
fuzzy clustering algorithms becomes a great obstacle to
practical applications. In this respect, although VGPF2
and VGPF3 perform with high accuracy, the proposed
validity index in this study achieved the same result
with much less computational complexity.

In addition, VFP;VFHV;VW;VGPF1;VGPF2, and
VGPF3 correctly recognize the number of clusters for
datasets where the cluster centers are close to each
other (Dataset 2 10 and Dataset 2 7). According
to the results, for noisy datasets (i.e., Dataset 2 6
and Dataset 2 5), the validity indices containing only
the membership values are very susceptible to noises;
however, some of the validity indices comprising the

membership values and the dataset (i.e., VFP and
VFHV) are robust to noise.

5.2. Analysis of gene expression data
Studies on microarray gene expression have been the
main focus of researchers over the last few years.
The main objective of these studies was to �nd the
biologically considerable knowledge hidden under a
large volume of gene expression data. In particular,
recognizing gene groups that exhibit similar expression
patterns (co-expressed genes) allows identifying the
set of genes involved in the same biological process;
therefore, we can characterize unfamiliar biological
facts. Clustering algorithms have exhibited an ex-
cellent capability to �nd the underlying patterns in
microarray gene expression pro�les [37].

With consideration of a set of genes, a clustering
algorithm divides the genes into a number of distinct
clusters based on certain similarity measures [38]. Each
cluster corresponds to a speci�c macroscopic pheno-
type, such as clinical syndromes or cancer types [39].
In fact, a clustering algorithm should identify a set of
clusters such that genes within a cluster possess high
similarity as compared to those in di�erent clusters;
this is not possible without knowing the optimal num-
ber of clusters.

In this subsection, three microarray gene expres-
sion datasets namely, yeast sporulation, Rat CNS, and
Arabidopsis thaliana, are tested and the capability of
the FP index is analyzed from di�erent perspectives.
These datasets are adopted from [40{42]. For more
information on the features of these datasets, refer
to [1].

After implementing the proposed validity in-
dex, the optimum number of clusters for Arabidopsis
thaliana and yeast sporulation datasets and Rat CNS
dataset is 4 and 3 clusters, respectively. The variation
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Table 4. The optimal number of clusters obtained by each cluster validity index.
Dataset c� PC PE FS XB K FHV PCAES W SC WGLI ECAS FNT GPF1 GPF2 GPF3 FP

Rat CNS 3 2 2 7 2 2 8 2 2 3 3 2 2 3 3 3 3
Yeast 4 2 2 3 2 2 7 2 4 3 2 4 4 4 4 4 4
Arabidopsis 4 2 2 7 4 3 7 2 4 2 4 4 3 4 4 4 4

Figure 6. The variation in FP index values with the number of clusters for all microarray gene expression datasets.

Figure 7. Eisen plot for Rat CNS dataset.

Figure 8. Eisen plot for yeast sporulation dataset.

of VFP with the number of clusters for these datasets
is depicted in Figure 6. In fact, based on [40{42], the
optimum number of clusters for Arabidopsis thaliana
and yeast sporulation datasets is 4 clusters and for
Rat CNS dataset is 3 clusters. Therefore, the proposed
validity index detected the correct number of clusters
for all of these datasets. Table 4 summarizes the
results obtained when these �fteen di�erent validity
indices are applied to these microarray gene expression
datasets. As observed earlier, the FP, GPF1, GPF2,
and GPF3 indices can correctly determine the number
of clusters for all of these datasets. However, given the
high complexity of GPF1, GPF2, and GPF3 indices
compared to the proposed index, we can conclude that

FP index yields the best result for the gene expression
datasets.

Moreover, to ensure a better understanding of the
microarray gene expression context, we used Eisen plot
as a visual tool. An Eisen plot is a two-dimensional
false color plot that visualizes the expression levels of
many genes across several samples. Every row in the
Eisen plot demonstrates a gene expression pro�le across
the sample [43]. We have also generated a random
sequence of genes to make a simpler distinction between
the e�ects of FP index and a random sequence of genes
for each dataset. These plots are depicted in Figures 7{
9. Lines in each Eisen plot are the boundaries of
clusters. Here, given that the number of clusters has
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Figure 9. Eisen plot for Arabidopsis thaliana dataset.

Figure 10. (a) CT image revealing a large cystic lesion. (b) CT image demonstrating a large liver hepatic
angiomyolipoma. (c) Grey scale ultrasound showing two focal non-speci�c hypoechoic liver lesions.

been determined properly, the genes within a cluster
possess high similarity as compared to the genes in
other clusters. Moreover, the genes in di�erent clusters
are properly separated.

It can be seen that FP index performs really
well in determining the suitable number of clusters of
the gene expression datasets. However, it should be
noted that because of the complicated nature of the
gene expression datasets, it is di�cult to �nd a single
partitioning that can be claimed to be the optimal
partition. From the �gures, it is apparent that the
expression pro�les of the genes of a cluster are similar to
each other and they usually have similar color patterns.
Moreover, these �gures also demonstrate how cluster
pro�les for various groups of genes di�er from each
other, while the pro�les within a group are similar.

5.3. Medical image segmentation
In this subsection, VFP is experimented on several liver
images to indicate the applicability of this approach to
medical image segmentation. In general, segmentation
is the process of dividing an image into regions with
similar properties such as color, brightness, texture,

and contrast [1]. The existence of noise and low
contrast in medical images are critical barriers that
may hinder achieving a good segmentation system.
Thus, in order to check the applicability of our method
in this area, three medical images of the liver are used.
For this purpose, two CT images and an ultrasound
image of the liver have been adopted from [44]. These
medical data are shown in Figure 10.

The proposed index is performed for the datasets
corresponding to these images, and the number of
clusters obtained is four for all of the datasets. The
variation in FP index values with the number of clus-
ters for these datasets is given in Figure 11. Moreover,
the results of segmentation by FPCM clustering when
the number of clusters is four are shown in Figures 12{
14.

Table 5 summarizes the results obtained when
the �fteen di�erent validity indices were applied to the
datasets corresponding to these images. As you can see,
the segmentation results show that FP, ECAS, GPF1,
GPF2, and GPF3 indices can successfully recognize the
optimal number of clusters for all of these datasets.
Consequently, FP index can e�ectively segment the

Table 5. The optimal number of clusters obtained by each cluster validity index.

Dataset PC PE FS XB K FHV PCAES W SC WGLI ECAS FNT GPF1 GPF2 GPF3 FP

Data1 2 2 5 10 4 17 2 4 4 2 4 4 4 4 4 4

Data2 2 2 5 5 2 4 4 8 4 4 4 4 4 4 4 4

Data3 2 2 11 9 2 2 2 4 5 4 4 5 4 4 4 4
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Figure 11. The variation in Fuzzy-Possibilistic (FP) index values with the number of clusters for the medical image
datasets.

Figure 12. The segmented Data 1.

Figure 13. The segmented Data 2.

Figure 14. The segmented Data 3.

cysts and lesions from the CT images and the ultra-
sound image, despite the gray level resemblance of
adjoining organs and the di�erent gray levels of hepatic
cysts and lesions in the images.

In general, the sensitivity of the ultrasound im-
ages was signi�cantly less than that of CT images
in detecting lesions. Ultrasound images are not as
detailed as those from CT or MRI scans. Their
applications are also limited in some parts of the body
because the sound waves cannot go through the air
(such as in the lungs) or bone. The main objective
of this experiment was to show the capability of the
proposed method to detect the lesions in ultrasound
images despite the gray level resemblance of adjoining

organs and di�erent gray levels of hepatic cysts and
lesions in these images. As observed in Figure 14,
the proposed method successfully detects two lesions.
However, due to the low quality of this kind of images,
the �nal result is not as good as CT images.

6. Conclusions

The present study managed to investigate several
fuzzy validity indices and discuss their advantages and
disadvantages. According to the observation, in case
the cluster centers were close to each other, some of
these indices produced incorrect results. Moreover,
most of these indices were susceptible to noise. To
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overcome these shortcomings, a new fuzzy-possibilistic
validity index called FP index was proposed in this
study.

Furthermore, FPCM, like other clustering algo-
rithms, was susceptible to some initial parameters. In
this regard, in addition to the number of clusters,
FPCM required a priori selection of the degree of
fuzziness (m) and degree of typicality (�). Therefore,
an e�cient procedure for determining the optimal
values of m and � was required.

In order to demonstrate the e�ciency of FP index,
the proposed index was assessed using eight arti�cial
and �ve well-known datasets. The results of the exper-
iments demonstrated the e�ectiveness and 
exibility of
the FP validity index in terms of sensitivity to cluster
overlapping and di�erence in the cluster shape and
density, in comparison with several other well-known
approaches in the literature. Moreover, the applica-
tions of the proposed approach in real microarray gene
expression datasets and medical image segmentation
were discussed. In both applications, the proposed
method, which was robust in the presence of noise,
exhibited an excellent performance in determining the
proper number of clusters.
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