Sulfated polysaccharide coated BaFe12O19: A magnetically separable bifunctional catalyst for the synthesis of benzopyranopyrimidines derivatives and its antibacterial activity evaluation

Document Type : Article

Authors

Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, P.O.Box 1684613114, Iran

10.24200/sci.2020.55606.4312

Abstract

Marine sulfated polysaccharide Irish moss (IM) coated BaFe12O19 nanocomposites were synthesized and characterized by Fourier Transform Infrared Spectrometer (FT-IR), scanning electron microscope (SEM (, X-ray diffraction (XRD (, vibrating-sample magnetometer (VSM (, and thermal gravimetric analysis (TGA). The indisputable privilege of BaFe12O19@ IM as a recyclable acid-base bifunctional catalyst has been studied in the preparation of benzopyranopyrimidines via a pseudo-four-component reaction of salicylic aldehydes, malononitrile, and various amines. Catalytic amount of BaFe12O19@IM shown high catalytic activity, and stability with negligible detriment in in its efficiency over five catalytic cycle. The catalytic property–catalytic performance associations clearly showed the synergistic effect between Irish moss, as major active phase, and barium ferrite nanoparticles enabling the catalyst separation in a magnetic field. Along with the catalytic activity, a study on the antibacterial performance of BaFe12O19@IM nanocomposites on bacteria strain was evaluated. The results showed that the prepared nanocomposites possess antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus).

Keywords


References:
1.    Wu, W., He, Q., and Jiang, C. “Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies”, Nanoscale Res. Lett., 3(11), pp .397 (2008).
2.    Stanciu, L., Won, Y. H., Ganesana, M., et al. “Magnetic particle-based hybrid platforms for bioanalytical sensors”, Sensors, 9(4), pp. 2976-2999 (2009).
3.    Hudson, R., Feng, Y., Varma, R. S., et al. “Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations”, Green Chemistry, 16(10), pp. 4493-4505 (2014).
4.    Kheilkordi, Z., Ziarani, G. M., Lashgari, N., et al. “An efficient method for the synthesis of functionalized 4H-chromenes as optical sensor for detection of Fe3+ in ethanol”, Polyhedron, 166, pp. 203-209 (2019).
5.    Hessien, M. M., and Khedr, M. H. “Catalytic activity and magnetic properties of barium hexaferrite prepared from barite ore”, Mater. Res. Bull., 42(7), pp. 1242-1250 (2007).
6.    Liu, X., Zhang, T., Xu, D., et al. “Microwave-assisted catalytic degradation of crystal violet with barium ferrite nanomaterial”, Ind. Eng. Chem. Res., 55(46), pp. 11869-11877 (2016).
7.    Haijun, Z., Zhichao, L., Chengliang, M., et al. “Complex permittivity, permeability, and microwave absorption of Zn-and Ti-substituted barium ferrite by citrate sol–gel process”, Mater. Sci. Eng., B., 96(3), pp. 289-295 (2002).
8.    Palla, B. J., Shah, D. O., Garcia-Casillas, P., et al. “Preparation of nanoparticles of barium ferrite from precipitation in microemulsions”, J. Nanopart. Res., 1(2), pp. 215-221 (1999).
9.    Piri, T., Peymanfar, R., Javanshir, S., et al. “Magnetic BaFe 12 O 19/Al 2 O 3: An Efficient Heterogeneous Lewis Acid Catalyst for the Synthesis of α-Aminophosphonates (Kabachnik–Fields Reaction)”, Catal. Lett. 149(12), pp. 3384-3394 (2019).
10.    Peymanfar, R., Ahmadi, M., and Javanshir, S. “Tailoring GO/BaFe12O19/La0. 5Sr0. 5MnO3 ternary nanocomposite and investigation of its microwave characteristics”, Mater. Res. Express, 6(8), pp. 085063 (2019).
11.    Zheng, Y., Monty, J., and Linhardt, R. J. “Polysaccharide-based nanocomposites and their applications”, Carbohydr. Res., 405, pp. 23-32 (2015).
12.    Pourjavadi, A., Hosseini, S. H., Seidi, F., et al. “Magnetic removal of crystal violet from aqueous solutions using polysaccharide‐based magnetic nanocomposite hydrogels”, Polym. Int., 62(7), pp. 1038-1044 (2013).
13.    Mahdavinasab, M., Hamzehloueian, M., and Sarrafi, Y. “Preparation and application of magnetic chitosan/graphene oxide composite supported copper as a recyclable heterogeneous nanocatalyst in the synthesis of triazoles”, Int. J. Biol. Macromol., 138, pp. 764-772 (2019).
14.    Grüttner, C., Rudershausen, S., and Teller, J. “Improved properties of magnetic particles by combination of different polymer materials as particle matrix”, J. Magn. Magn. Mater., 225(1-2), pp. 1-7 (2001).
15.    Maleki, A., Varzi, Z., and Hassanzadeh-Afruzi, F. “Preparation and characterization of an eco-friendly ZnFe2O4@ alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4H-pyran derivatives”, Polyhedron, 171, pp. 193-202 (2019).
16.    Chang, P. R., Yu, J., Ma, X., et al. “Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles”, Carbohydr. Polym., 83(2), pp. 640-644 (2011).
17.    Salehi, M. H., Yousefi, M., Hekmati, M., et al. “In situ biosynthesis of palladium nanoparticles on Artemisia abrotanum extract-modified graphene oxide and its catalytic activity for Suzuki coupling reactions”, Polyhedron, 165, pp. 132-137 (2019).
18.    Dolatkhah, Z., Javanshir, S., Bazgir, A., et al. “Palladium on magnetic Irish moss: A new nano‐biocatalyst for suzuki type cross‐coupling reactions”, Appl. Organomet. Chem., 33(7), pp. e4859 (2019).
19.    Hemmati, B., Javanshir, S., and Dolatkhah, Z. “Hybrid magnetic Irish moss/Fe 3 O 4 as a nano-biocatalyst for synthesis of imidazopyrimidine derivatives”, RSC Adv., 6(56), pp. 50431-50436 (2016).
20.    Rudtanatip, T., Lynch, S. A., Wongprasert, K., et al. “Assessment of the effects of sulfated polysaccharides extracted from the red seaweed Irish moss Chondrus crispus on the immune-stimulant activity in mussels Mytilus spp”, Fish Shellfish Immunol., 75, pp. 284-290 (2018).
21.    Lee, J., Ghosh, S., and Saier Jr, M. H. “Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae11”, J. Phycol., 53(3), pp. 503-521 (2017).
22.    Prajapati, V. D., Maheriya, P. M., Jani, G. K., et al. “RETRACTED: Carrageenan: A natural seaweed polysaccharide and its applications”, Carbohydr. Polym., 105, pp. 97-112 (2014).
23.    Gordon Young, E., and Goring, D. A. I. “The stability of carrageenin in dried Irish moss (Chondrus crispus)”, J. Sci. Food Agric., 9(9), pp. 539-541 (1958).
24.    Zaheri, H. M., Javanshir, S., Hemmati, B., et al. “Magnetic core–shell Carrageenan moss/Fe 3 O 4: a polysaccharide-based metallic nanoparticle for synthesis of pyrimidinone derivatives via Biginelli reaction”, Chem. Cent. J., 12(1), pp. 108. (2018).
25.    Safari, J., and Javadian, L. “Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst”, Ultrason. Sonochem., 22, pp. 341-348 (2015).
26.    Murugadoss, A., and Chattopadhyay, A. “A ‘green’chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst”, Nanotechnology, 19(1), pp. 015603 (2007).
27.    Movassagh, B., and Rezaei, N. “A magnetic porous chitosan-based palladium catalyst: a green, highly efficient and reusable catalyst for Mizoroki–Heck reaction in aqueous media”, New J. Chem., 39(10), pp. 7988-7997 (2015).
28.    Saikia, G., Ahmed, K., Gogoi, S. R., et al. “A chitosan supported peroxidovanadium (V) complex: Synthesis, characterization and application as an eco-compatible heterogeneous catalyst for selective sulfoxidation in water”, Polyhedron, 159, pp. 192-205 (2019).
29.    Wu, W. B., Chen, S. H., Hou, J. Q., et al. “Disubstituted 2-phenyl-benzopyranopyrimidine derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA”, Org. Biomol. Chem., 9(8), pp. 2975-2986 (2011).
30.    Bruno, O., Brullo, C., Schenone, S., et al. “Synthesis, antiplatelet and antithrombotic activities of new 2-substituted benzopyrano [4, 3-d] pyrimidin-4-cycloamines and 4-amino/cycloamino-benzopyrano [4, 3-d] pyrimidin-5-ones”, Bioorg. Med. Chem., 14(1), pp. 121-130 (2006).
31.    Bajda, M., Guzior, N., Ignasik, M., et al. B. “Multi-target-directed ligands in Alzheimer's disease treatment”, Curr. Med. Chem., 18(32), pp. 4949-4975 (2011).
32.    Ghahremanzadeh, R., Amanpour, T., and Bazgir, A. “Pseudo four-component synthesis of benzopyranopyrimidines”, Tetrahedron Lett., 51(32), pp. 4202-4204 (2010).
33.    Zonouzi, A., Biniaz, M., and Mirzazadeh, R. “An efficient one-pot and solvent-free synthesis of chromeno [2, 3-d] pyrimidine derivatives: microwave assisted reaction”, Heterocycles, 81(5), pp. 1271-1278 (2010).
34.    Amirnejat, S., Movahedi, F., Masrouri, H., et al. “Silica nanoparticles immobilized benzoylthiourea ferrous complex as an efficient and reusable catalyst for one-pot synthesis of benzopyranopyrimidines”, J. Mol. Catal. A: Chem., 378, pp. 135-141 (2013).
35.    Niknam, K., and Borazjani, N. “Synthesis of Benzopyrano [2, 3-d] pyrimidines Using Silica-Bonded N-Propyldiethylenetriamine Sulfamic Acid (SPDTSA) As Heterogeneous Solid Acid Catalyst under Solvent-Free Conditions”, Org. Chem. Res., 1(1), pp. 78-86 (2015).
36.    Mostafavi, M. M., and Movahedi, F. “Synthesis, Characterization, and Heterogeneous Catalytic Activity of Sulfamic Acid Functionalized Magnetic IRMOF‐3”, Eur. J. Org. Chem., 2019(6), pp. 787-793 (2019).
37.    Kanakaraju, S., Prasanna, B., Basavoju, S., et al. “Ionic liquid catalyzed one-pot multi-component synthesis, characterization and antibacterial activity of novel chromeno [2, 3-d] pyrimidin-8-amine derivatives”, J. Mol. Struct., 1017, pp. 60-64 (2012).
38.    Ballabeni, V., Calcina, F., Tognolini, M., et al. “Effects of subacute treatment with benzopyranopyrimidines in hemostasis and experimental thrombosis in mice”, Life Sci., 74(15), pp. 1851-1859 (2004).
39.    Bruno, O., Brullo, C., Bondavalli, F., et al. “2-Amino/azido/hydrazino-5-alkoxy-5H-[1] benzopyrano [4, 3-d] pyrimidines: synthesis and pharmacological evaluation”, Med. Chem., 3(2), pp. 127-134 (2007).
40.    Gupta, A. K., Kumari, K., Singh, N., et al. “An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature”, Tetrahedron Lett., 53(6), pp. 650-653 (2012).
41.    Shaterian, H. R., and Aghakhanizadeh, M. “Mild preparation of chromeno [2, 3-d] pyrimidines catalyzed by Brønsted acidic ionic liquids under solvent-free and ambient conditions”, Res. Chem. Intermed., 39(8), pp. 3877-3885 (2013).
42.    Ghorbani‐Vaghei, R., Shirzadi‐Ahodashti, M., Eslami, F., et al. “Efficient One‐Pot Synthesis of Quinazoline and Benzopyrano [2, 3‐d] pyrimidine Derivatives Catalyzed by N‐Bromosulfonamides”, J. Heterocycl. Chem., 54(1), pp. 215-225 (2017).
43.    Umamahesh, B., Mandlimath, T. R., and Sathiyanarayanan, K. I. “A novel, facile, rapid, solvent free protocol for the one pot green synthesis of chromeno [2, 3-d] pyrimidines using reusable nano ZnAl2O4–a NOSE approach and photophysical studies”, RSC Adv., 5(9), pp. 6578-6587 (2014).
44.    Kabeer, S. A., Reddy, G. R., Sreelakshmi, P., et al. “TiO2–SiO2 Catalyzed Eco‐friendly Synthesis and Antioxidant Activity of Benzopyrano [2, 3‐d] pyrimidine Derivatives”, J. Heterocycl. Chem., 54(5), pp. 2598-2604 (2017).
45.    Thirupathaiah, B., Reddy, M. V., and Jeong, Y. T. “Solvent-free sonochemical multi-component synthesis of benzopyranopyrimidines catalyzed by polystyrene supported p-toluenesulfonic acid”, Tetrahedron, 71(14), pp. 2168-2176 (2015).
46.    Zonouzi, A., Hosseinzadeh, F., Karimi, N., et al.  “Novel approaches for the synthesis of a library of fluorescent chromenopyrimidine derivatives”, ACS Comb. Sci., 15(5), pp. 240-246 (2013).
47.    Nasab, M. J., and Kiasat, A. R. “Covalently anchored 2-amino ethyl-3-propyl imidazolium bromideon SBA-15 as a green, efficient and reusable Brønsted basic ionic liquid nanocatalyst for one-pot solvent-free synthesis of benzopyranopyrimidines under ultrasonic irradiation”, RSC Adv., 5(92), pp. 75491-75499 (2015).
48.    Niknam, K., and Borazjani, N. “Synthesis of benzopyrano [2, 3-d] pyrimidines using silica-bonded N-propylpiperazine sodium N-propionate as heterogeneous solid base catalyst under solvent-free conditions”, Monatsh. Chem., 147(6), pp. 1129-1135 (2016).
49.    Kour, G., and Gupta, M. “A nano silver-xerogel (Ag nps@ modified TEOS) as a newly developed nanocatalyst in the synthesis of benzopyranopyrimidines (with secondary and primary amines) and gem-bisamides”, Dalton Trans., 46(21), pp. 7039-7050 (2017).
50.    Thirupathaiah, B., Reddy, M.V. and Jeong, Y.T., “Solvent-free sonochemical multi-component synthesis of benzopyranopyrimidines catalyzed by polystyrene supported p-toluenesulfonic acid” Tetrahedron, 71(14), pp.2168-2176 (2015).