Sulfated polysaccharide coated BaFe12O19: A magnetically separable bifunctional catalyst for the synthesis of benzopyranopyrimidines derivatives and its antibacterial activity evaluation

Document Type : Article

Authors

Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, P.O.Box 1684613114, Iran

10.24200/sci.2020.55606.4312

Abstract

Marine sulfated polysaccharide Irish moss (IM) coated BaFe12O19 nanocomposites were synthesized and characterized by Fourier Transform Infrared Spectrometer (FT-IR), scanning electron microscope (SEM (, X-ray diffraction (XRD (, vibrating-sample magnetometer (VSM (, and thermal gravimetric analysis (TGA). The indisputable privilege of BaFe12O19@ IM as a recyclable acid-base bifunctional catalyst has been studied in the preparation of benzopyranopyrimidines via a pseudo-four-component reaction of salicylic aldehydes, malononitrile, and various amines. Catalytic amount of BaFe12O19@IM shown high catalytic activity, and stability with negligible detriment in in its efficiency over five catalytic cycle. The catalytic property–catalytic performance associations clearly showed the synergistic effect between Irish moss, as major active phase, and barium ferrite nanoparticles enabling the catalyst separation in a magnetic field. Along with the catalytic activity, a study on the antibacterial performance of BaFe12O19@IM nanocomposites on bacteria strain was evaluated. The results showed that the prepared nanocomposites possess antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus).

Keywords


References      1. Wu, W., He, Q., and Jiang, C. Magnetic iron oxide      nanoparticles: synthesis and surface functionalization      strategies", Nanoscale Res. Lett., 3(11), p. 397 (2008).      2. Stanciu, L., Won, Y.H., Ganesana, M., et al. Magnetic      particle-based hybrid platforms for bioanalytical      sensors", Sensors, 9(4), pp. 2976{2999 (2009).      3. Hudson, R., Feng, Y., Varma, R.S., et al. Bare      magnetic nanoparticles: sustainable synthesis and applications      in catalytic organic transformations", Green      Chemistry, 16(10), pp. 4493{4505 (2014).      4. Kheilkordi, Z., Ziarani, G.M., Lashgari, N., et al. An      e_cient method for the synthesis of functionalized 4Hchromenes      as optical sensor for detection of Fe3+ in      ethanol", Polyhedron, 166, pp. 203{209 (2019).      5. Hessien, M.M. and Khedr, M.H. Catalytic activity      and magnetic properties of barium hexaferrite prepared      from barite ore", Mater. Res. Bull., 42(7), pp.      1242{1250 (2007).      6. Liu, X., Zhang, T., Xu, D., et al. Microwave-assisted      catalytic degradation of crystal violet with barium      ferrite nanomaterial", Ind. Eng. Chem. Res., 55(46),      pp. 11869{11877 (2016).      7. Haijun, Z., Zhichao, L., Chengliang, M., et al. Complex      permittivity, permeability, and microwave absorption      of Zn-and Ti-substituted barium ferrite by citrate      sol-gel process", Mater. Sci. Eng., B., 96(3), pp. 289{      295 (2002).      8. Palla, B.J., Shah, D.O., Garcia-Casillas, P., et al.      Preparation of nanoparticles of barium ferrite from      precipitation in microemulsions", J. Nanopart. Res.,      1(2), pp. 215{221 (1999).      9. Piri, T., Peymanfar, R., Javanshir, S., et al. Magnetic      BaFe12O19/Al2O3: An e_cient heterogeneous Lewis      acid catalyst for the synthesis of _-aminophosphonates      (Kabachnik-_elds reaction)", Catal. Lett., 149(12), pp.      3384{3394 (2019).      10. Peymanfar, R., Ahmadi, M., and Javanshir, S.      Tailoring GO/BaFe12O19/La0.5Sr0.5MnO3 ternary      nanocomposite and investigation of its microwave      characteristics", Mater. Res. Express, 6(8), p. 085063      (2019).      11. Zheng, Y., Monty, J., and Linhardt, R.J.      Polysaccharide-based nanocomposites and their      applications", Carbohydr. Res., 405, pp. 23{32 (2015).      12. Pourjavadi, A., Hosseini, S.H., Seidi, F., et al. Magnetic      removal of crystal violet from aqueous solutions      using polysaccharide-based magnetic nanocomposite      hydrogels", Polym. Int., 62(7), pp. 1038{1044 (2013).      13. Mahdavinasab, M., Hamzehloueian, M., and Sarra_,      Y. Preparation and application of magnetic chitosan/      graphene oxide composite supported copper as a      recyclable heterogeneous nanocatalyst in the synthesis      of triazoles", Int. J. Biol. Macromol., 138, pp. 764{772      (2019).      14. Gruttner, C., Rudershausen, S., and Teller, J. Improved      properties of magnetic particles by combination      of di_erent polymer materials as particle matrix", J.      Magn. Magn. Mater., 225(1{2), pp. 1{7 (2001).      15. Maleki, A., Varzi, Z., and Hassanzadeh-Afruzi, F.      Preparation and characterization of an eco-friendly      ZnFe2O4@ alginic acid nanocomposite catalyst and      its application in the synthesis of 2-amino-3-cyano-      4H-pyran derivatives", Polyhedron, 171, pp. 193{202      (2019).      16. Chang, P.R., Yu, J., Ma, X., et al. Polysaccharides as      stabilizers for the synthesis of magnetic nanoparticles",      Carbohydr. Polym., 83(2), pp. 640{644 (2011).      17. Salehi, M.H., Youse_, M., Hekmati, M., et al. In situ      biosynthesis of palladium nanoparticles on Artemisia      abrotanum extract-modi_ed graphene oxide and its      catalytic activity for Suzuki coupling reactions", Polyhedron,      165, pp. 132{137 (2019).      18. Dolatkhah, Z., Javanshir, S., Bazgir, A., et al.      Palladium on magnetic Irish moss: A new nanobiocatalyst      for suzuki type cross-coupling reactions",      Appl. Organomet. Chem., 33(7), p. e4859 (2019).      19. Hemmati, B., Javanshir, S., and Dolatkhah, Z. Hybrid      magnetic Irish moss/Fe3O4 as a nano-biocatalyst      for synthesis of imidazopyrimidine derivatives", RSC      Adv., 6(56), pp. 50431{50436 (2016).      20. Rudtanatip, T., Lynch, S.A., Wongprasert, K., et al.      Assessment of the e_ects of sulfated polysaccharides      extracted from the red seaweed Irish moss Chondrus      crispus on the immune-stimulant activity in mussels      Mytilus spp", Fish Shell_sh Immunol., 75, pp. 284{      290 (2018).      21. Lee, J., Ghosh, S., and Saier Jr, M.H. Comparative      genomic analyses of transport proteins encoded within      the red algae Chondrus crispus, Galdieria sulphuraria,      and Cyanidioschyzon merolae11",J. Phycol., 53(3), pp.      503{521 (2017).      22. Prajapati, V.D., Maheriya, P.M., Jani, G.K., et      al. RETRACTED: Carrageenan: A natural seaweed      polysaccharide and its applications", Carbohydr.      Polym., 105, pp. 97{112 (2014).      23. Gordon Young, E. and Goring, D.A.I. The stability      of carrageenin in dried Irish moss (Chondrus crispus)",      J. Sci. Food Agric., 9(9), pp. 539{541 (1958).      24. Zaheri, H.M., Javanshir, S., Hemmati, B., et al.      Magnetic core-shell Carrageenan moss/Fe3O4: a      polysaccharide-based metallic nanoparticle for synthesis      of pyrimidinone derivatives via Biginelli reaction",      Chem. Cent. J., 12(1), p. 108 (2018).      25. Safari, J. and Javadian, L. Ultrasound assisted the      green synthesis of 2-amino-4H-chromene derivatives      catalyzed by Fe3O4-functionalized nanoparticles with      chitosan as a novel and reusable magnetic catalyst",      Ultrason. Sonochem., 22, pp. 341{348 (2015).      26. Murugadoss, A. and Chattopadhyay, A. A 'green'      chitosan-silver nanoparticle composite as a heterogeneous      as well as micro-heterogeneous catalyst", Nanotechnology,      19(1), p. 015603 (2007).      1412 S. Amirnejat and S. Javanshir/Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1400{1413      27. Movassagh, B. and Rezaei, N. A magnetic porous      chitosan-based palladium catalyst: a green, highly e_-      cient and reusable catalyst for Mizoroki-Heck reaction      in aqueous media", New J. Chem., 39(10), pp. 7988{      7997 (2015).      28. Saikia, G., Ahmed, K., Gogoi, S.R., et al. A chitosan      supported peroxidovanadium (V) complex: Synthesis,      characterization and application as an eco-compatible      heterogeneous catalyst for selective sulfoxidation in      water", Polyhedron, 159, pp. 192{205 (2019).      29. Wu, W.B., Chen, S.H., Hou, J.Q., et al. Disubstituted      2-phenyl-benzopyranopyrimidine derivatives as      a new type of highly selective ligands for telomeric      G-quadruplex DNA", Org. Biomol. Chem., 9(8), pp.      2975{2986 (2011).      30. Bruno, O., Brullo, C., Schenone, S., et al. Synthesis,      antiplatelet and antithrombotic activities of      new 2-substituted benzopyrano [4, 3-d] pyrimidin-4-      cycloamines and 4-amino/cycloamino-benzopyrano [4,      3-d] pyrimidin-5-ones", Bioorg. Med. Chem., 14(1),      pp. 121{130 (2006).      31. Bajda, M., Guzior, N., Ignasik, M., et al. Multitarget-      directed ligands in Alzheimer's disease treatment",      Curr. Med. Chem., 18(32), pp. 4949{4975      (2011).      32. Ghahremanzadeh, R., Amanpour, T., and Bazgir, A.      Pseudo four-component synthesis of benzopyranopyrimidines",      Tetrahedron Lett., 51(32), pp. 4202{4204      (2010).      33. Zonouzi, A., Biniaz, M., and Mirzazadeh, R. An e_-      cient one-pot and solvent-free synthesis of chromeno [2,      3-d] pyrimidine derivatives: microwave assisted reaction",      Heterocycles, 81(5), pp. 1271{1278 (2010).      34. Amirnejat, S., Movahedi, F., Masrouri, H., et al.      Silica nanoparticles immobilized benzoylthiourea ferrous      complex as an e_cient and reusable catalyst for      one-pot synthesis of benzopyranopyrimidines", J. Mol.      Catal. A: Chem., 378, pp. 135{141 (2013).      35. Niknam, K. and Borazjani, N. Synthesis of benzopyrano      [2, 3-d] pyrimidines using silica-bonded Npropyldiethylenetriamine      sulfamic acid (SPDTSA) as      heterogeneous solid acid catalyst under solvent-free      conditions", Org. Chem. Res., 1(1), pp. 78{86 (2015).      36. Mostafavi, M.M. and Movahedi, F. Synthesis, characterization,      and heterogeneous catalytic activity of      sulfamic acid functionalized magnetic IRMOF-3", Eur.      J. Org. Chem., 2019(6), pp. 787{793 (2019).      37. Kanakaraju, S., Prasanna, B., Basavoju, S., et al.      Ionic liquid catalyzed one-pot multi-component synthesis,      characterization and antibacterial activity of      novel chromeno [2, 3-d] pyrimidin-8-amine derivatives",      J. Mol. Struct., 1017, pp. 60{64 (2012).      38. Ballabeni, V., Calcina, F., Tognolini, M., et al. E_ects      of subacute treatment with benzopyranopyrimidines in      hemostasis and experimental thrombosis in mice", Life      Sci., 74(15), pp. 1851{1859 (2004).      39. Bruno, O., Brullo, C., Bondavalli, F., et al.      2-Amino/azido/hydrazino-5-alkoxy-5H-[1] benzopyrano      [4, 3-d] pyrimidines: synthesis and pharmacological      evaluation", Med. Chem., 3(2), pp. 127{134 (2007).      40. Gupta, A.K., Kumari, K., Singh, N., et al. An      eco-safe approach to benzopyranopyrimidines and 4Hchromenes      in ionic liquid at room temperature", Tetrahedron      Lett., 53(6), pp. 650{653 (2012).      41. Shaterian, H.R. and Aghakhanizadeh, M. Mild preparation      of chromeno [2, 3-d] pyrimidines catalyzed by      Br_nsted acidic ionic liquids under solvent-free and      ambient conditions", Res. Chem. Intermed., 39(8), pp.      3877{3885 (2013).      42. Ghorbani-Vaghei, R., Shirzadi-Ahodashti, M., Eslami,      F., et al. E_cient one-pot synthesis of quinazoline      and benzopyrano [2, 3-d] pyrimidine derivatives      catalyzed by N-bromosulfonamides", J. Heterocycl.      Chem., 54(1), pp. 215{225 (2017).      43. Umamahesh, B., Mandlimath, T.R., and Sathiyanarayanan,      K.I. A novel, facile, rapid, solvent free      protocol for the one pot green synthesis of chromeno [2,      3-d] pyrimidines using reusable nano ZnAl2O4-a NOSE      approach and photophysical studies", RSC Adv., 5(9),      pp. 6578{6587 (2014).      44. Kabeer, S.A., Reddy, G.R., Sreelakshmi, P., et al.      TiO2-SiO2 catalyzed eco-friendly synthesis and antioxidant      activity of benzopyrano [2, 3-d] pyrimidine      derivatives", J. Heterocycl. Chem., 54(5), pp. 2598{      2604 (2017).      45. Thirupathaiah, B., Reddy, M.V., and Jeong,      Y.T. Solvent-free sonochemical multi-component      synthesis of benzopyranopyrimidines catalyzed by      polystyrene supported p-toluenesulfonic acid", Tetrahedron,      71(14), pp. 2168{2176 (2015).      46. Zonouzi, A., Hosseinzadeh, F., Karimi, N., et al.      Novel approaches for the synthesis of a library of uorescent      chromenopyrimidine derivatives", ACS Comb.      Sci., 15(5), pp. 240{246 (2013).      47. Nasab, M.J. and Kiasat, A.R. Covalently anchored 2-      amino ethyl-3-propyl imidazolium bromideon SBA-15      as a green, e_cient and reusable Br_nsted basic ionic      liquid nanocatalyst for one-pot solvent-free synthesis of      benzopyranopyrimidines under ultrasonic irradiation",      RSC Adv., 5(92), pp. 75491{75499 (2015).      48. Niknam, K. and Borazjani, N. Synthesis of benzopyrano      [2, 3-d] pyrimidines using silica-bonded      N-propylpiperazine sodium N-propionate as heterogeneous      solid base catalyst under solvent-free conditions",      Monatsh. Chem., 147(6), pp. 1129{1135      (2016).      S. Amirnejat and S. Javanshir/Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1400{1413 1413      49. Kour, G. and Gupta, M. A nano silver-xerogel (Ag      nps@ modi_ed TEOS) as a newly developed nanocatalyst      in the synthesis of benzopyranopyrimidines (with      secondary and primary amines) and gem-bisamides",      Dalton Trans., 46(21), pp. 7039{7050 (2017).      50. Thirupathaiah, B., Reddy, M.V., and Jeong,      Y.T. Solvent-free sonochemical multi-component      synthesis of benzopyranopyrimidines catalyzed by      polystyrene supported p-toluenesulfonic acid", Tetrahedron,      71(14), pp. 2168{2176 (2015).