On the global practical stabilization of discrete-time switched affine systems: Application to switching power converters

Document Type : Article


Department of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, P.O. Box 51335-1996, Iran


This paper presents new sufficient conditions as a set of Bilinear
Matrix Inequalities (BMIs) for the global practical stabilization of
discrete-time switched affine systems. The main contribution is on
proposing the stability conditions based on a common quadratic
Lyapunov function that can be used to stabilize the discrete-time
switched affine systems around a desired equilibrium point for which
it is not required to find any Schur stable convex combination of
operating modes as a pre-processing stage, that needs special
algorithms and is an NP-hard problem. The result is that the
existing two-stage stabilization methods based on a pre-calculation
of a Schur stable convex combination of operating modes are
simplified to a single-stage method by which a high degree of
applicability is obtained. The proposed stability conditions are
developed in a way the size of the convergence ellipsoid is
minimized. Moreover, it is not required the equilibrium point,
around which the invariant set of attraction is constructed, be
inside a predetermined set of attainable equilibrium points. The
satisfactory operation of the proposed stability conditions is
illustrated by an academic example and application on
various DC-DC converters.


References  1. Lygeros, J. and Sastry, S. Veri_ed hybrid controllers  for automated vehicles", IEEE Trans. Autom. Control,  43(4), pp. 522{539 (1998).  2. Torrisi, D.F. and Bemporad, A. HYSDEL-a tool for  generating computational hybrid models for analysis  and synthesis problems", IEEE Trans. Control Syst.  Technol., 12(2), pp. 235{249 (2004).  3. Bemporad, A. and Morari, M. Control of systems integrating  logic, dynamic and constraints", Automatica,  35(3), pp. 407{427 (1999).  4. Hejri, M., Giua, A., and Mokhtari, H. On the  complexity and dynamical properties of mixed logical  dynamical systems via an automaton-based realization  of discrete-time hybrid automaton", Int. J. of Robust  Nonlin., 28(16), pp. 4713{4746 (2018).  5. Hejri, M. and Mokhtari, H. On the well-posedness,  equivalency and low-complexity translation techniques  of discrete-time hybrid automaton and piecewise a_ne  systems", Scientia Iranica, Transactions D, Computer  Science & Electrical Engineering (2019) (In Press).  DOI: 10.24200/sci.2019.53308.3177  6. Sun, Z. and Sam Ge, S., Switched Linear Systems,  Control and Design, E.D. Sontag, M. Thoma, A. Isidori  and J.H. van Schuppen, Eds., Springer-Verlag London  (2005).  7. Liberzon, D., Switching in Systems and Control, T.  Basar, Bikhauser Boston (2003).  8. Zhao, W., Kao, Y., Niu, B., et al., Control Synthesis  of Switched Systems, Springer International Publishing  Switzerland (2017).  9. Sun, Z. and Sam Ge, S., Stability Theory of Switched  Dynamical Systems, A. Isidori, J.H. van Schuppen,  E.D. Sontag, M. Thoma and M. Krstic, Eds., Springer-  Verlag London (2011).  10. Liberzon, D. and Morse, A.S. Basic problems in stability  and design of switched systems", IEEE Control  Syst. Mag. , 19(5), pp. 59{70 (1999).  11. Hai Lin, H. and Antsaklis, P.J. Stability and stabilizability  of switched linear systems: a survey of recent  results", IEEE Trans. Autom. Control, 54(2), pp. 308{  322 (2009).  12. Decarlo, R.A., Branicky, M.S., Pettersson, S., et al.  Perspectives and results on the stability and stabilizability  of hybrid systems", Proceedings of the IEEE,  88(7), pp. 1069{1082 (2000).  13. Shorten, R., Wirth, F., Mason, O., et al. Stability criteria  for switched and hybrid systems", SIAM Review,  49(4), pp. 545{592 (2007).  14. Deaecto, G.S., Geromel, J.C., Garcia, F.S., et al.  Switched a_ne systems control design with application  to DC-DC converters", IET Control Theory A.,  4(7), pp. 1201{1210 (2010).  15. Baldi, S., Papachristodoulou, A., and Kosmatopoulos,  E.B. Adaptive pulse width modulation design for  power converters based on a_ne switched systems",  Nonlinear Anal-Hybri., 30, pp. 306{322 (2018).  16. Yoshimora, V.L., Assuncao, E., Pires da Silva, E.R., et  al. Observer-based control design for switched a_ne  systems and applications to DC_DC converters", Journal  of Control, Automation and Electrical Systems,  24(4), pp. 535{543 (2013).  17. Corona, D., Buisson, J., De Schutter, B., et al. Stabilization  of switched a_ne systems: An application  to the buck-boost converter", Proceedings of American  Control Conf., New York, pp. 6037{6042 (2007).  18. Albea, C., Garcia, G., and Zaccarian, L. Hybrid dynamic  modeling and control of switched a_ne systems:  application to DC-DC converters", IEEE 54th Annual  Conf. on Decision and Control, Osaka, Japan, pp.  2264{2269 (2015).  19. Beneux, G., Riedinger, P., Daafouz, J., et al. Adaptive  stabilization of switched a_ne systems with unknown  equilibrium points: application to power converters",  Automatica, 99, pp. 82{91 (2019).  20. Deaecto, G.S. and Geromel, J.C. Stability analysis  and control design of discrete-time switched a_ne  systems", IEEE Trans. Autom. Control, 62(8), pp.  4058{4065 (2017).  21. Egidio, L.N. and Deaecto, G.S. Novel practical  stability conditions for discrete-time switched a_ne  systems", IEEE Trans. Autom. Control, 64(11), pp.  4705{4710 (2019).  22. Albea Sanchez, C., Garcia, G., Sabrina, H., et al.  Practical stabilisation of switched a_ne systems with  dwell-time guarantees", IEEE Trans. Autom. Control,  64(11), pp. 4811{4817 (2019).  23. Hetel, L. and Fridman, E. Robust sampled-data control  of switched a_ne systems", IEEE Trans. Autom.  Control, 58(11), pp. 2922{2928 (2013).  24. Hauroigne, P., Riedinger, P., and Iung, C. Switched  a_ne systems using sampled-data controllers: robust  and guaranteed stabilization", IEEE Trans. Autom.  Control, 56(12), pp. 2929{2935 (2011).  25. Kuiava, R., Ramos, R.A., Pota, H.R., et al. Practical  stability of switched systems without a common  equilibria and governed by a time-dependent switching  signal", Eur. J. Control, 19(3), pp. 206{213 (2013).  M. Hejri/Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1621{1642 1641  26. Xu, X., Zhai, G., and He, S. On practical asymptotic  stabilizability of switched a_ne systems", Nonlinear  Anal-Hybri., 2(1), pp. 196{208 (2008).  27. Xu, X. and Zhai, G. Practical stability and stabilization  of hybrid and switched systems", IEEE Trans.  Autom. Control, 50(11), pp. 1897{1903 (2005).  28. Xu, X., Zhai, G., and He, S. Stabilizability and  practical stabilizability of continuous-time switched  systems: a uni_ed view", Proceedings of the 2007  American Control Conf., New York City, USA, pp.  663{668 (2007).  29. Xu, X., Zhai, G., and He, S. Some results on  practical stabilizability of discrete-time switched a_ne  systems", Nonlinear Anal-Hybri., 4(1), pp. 113{121  (2010).  30. Xu, X., Zhai, G., and He, S. On practical stabilizability  of discrete-time switched a_ne systems", Joint  48th IEEE Conf. on Decision and Control, Shanghai,  China, pp. 2144{2149 (2009).  31. Boyd, S., El Ghaoui, L., Feron, E., et al., Linear Matrix  Inequalities in Systems and Control Theory, Society for  Industrial and Applied Mathematics, SIAM (1994).  32. Duan, G.-R. and Yu, H.-H., LMIs in Control Systems:  Analysis, Design and Applications, CRC Press, Taylor  & Francis Group (2013).  33. Blondel, V. and Tsitsiklis, J.N. NP-Hardness of some  linear control design problems", SIAM J. Control and  Optim., 35(6), pp. 2118{2127 (1997).  34. Scharlau, C.C., de Oliveria, M.C., Tro_no, A., et  al. Switching rule design for a_ne switched systems  using a max-type composition rule", IEEE Trans.  Autom. Control, 68, pp. 1{8 (2014).  35. Tro_no, A., Assmann, D., Scharlau, C.C., et al.  Switching rule design for switched dynamic systems  with a_ne vector _elds", IEEE Trans. Autom. Control,  54(9), pp. 2215{2222 (2009).  36. Tro_no, A., Scharlau, C.C., and Coutinho, D.F.  Corrections to Switching rule design for switched  dynamic systems with a_ne vector _elds"", IEEE  Trans. Autom. Control, 57(4), pp. 1080{1082 (2014).  37. VanAntwerp, J.G. and Braatz, R.D. A tutorial on  linear and bilinear matrix inequalities", J. Process  Contr., 10(4), pp. 365{385 (2000).  38. Hassibi, A., How, J., and Boyd, S. A path-following  method for solving BMI problems in control", Proceedings  of the American Control Conf., San Diego,  California, pp. 1385{1389 (1999).  39. Bolzern, P. and Spinelli, W. Quadratic stabilization  of a switched a_ne system about a nonequilibrium  point", Proceedings of the 2004 American Control  Conf., Boston, Massachusetts, pp. 3890{3895 (2004).  40. Deaecto, G.S. and Santos, G.C. State feedback H1  control design of continuous-time switched-a_ne systems",  IET Control Theory A., 9(10), pp. 1511{1516  (2014).  41. Deaecto, G.S. Dynamic output feedback H1 control  of continuous-time switched a_ne systems", Automatica,  71, pp. 44{49 (2016).  42. Poznyak, A., Polyakov, A., and Azhmyakov, V. Attractive  Ellipsoids in Robust Control ", T. Basar, Ed.,  Birkhauser (2014).  43. Perez, C., Azhmyakov, V., and Poznyak, A. Practical  stabilization of a class of switched systems: dwell-time  approach", IMA J. of Math. Control I., 32(4), pp. 689{  702 (2015).  44. Khalil, H., Nonlinear Systems, Prentice Hall, third  edition (2003).  45. Lakshmikantham, V., Leela, S., and Martynyuk, A.A.,  Practical Stability of Nonlinear Systems, World Scienti  _c (1990).  46. Geromel, J.C. and Colaneri, P. Stability and stabilization  of discrete-time switched systems", Int. J.  Control, 79(7), pp. 719{728 (2006).  47. Lofberg, J. YALMIP: A toolbox for modeling and  optimization in MATLAB", IEEE International Symposium  on Computer Aided Control Systems Design,  Taipei, Taiwan, pp. 284{289 (2004).  48. Kocvara, M. and Stingl, M. PENBMI Users Guide  (Version 2.1), www.penopt.com (2006).  49. Lacerda, M.J. and Gomide, T. da S. Stability and stabilizability  of switched discrete-time systems based on  structured Lyapunov functions", IET Control Theory  A., 14(5), pp. 781{789 (2020).  50. Patra, P., Patra, A., and Misra, N. A singleinductor  multiple-output switcher with simultaneous  buck, boost, and inverted outputs", IEEE Trans.  Power Electron., 27(4), pp. 1936{1951 (2012).  51. Patra, P., Ghosh, J., and Patra, A. Control scheme for  reduced cross-regulation in single-inductor multipleoutput  DC-DC converters", IEEE Trans. Ind. Electron.,  60(11), pp. 5095{5104 (2013).  52. Wang, B., Kanamarlapudi, V.R.K., Xiang, L., Peng,  X., Tan, K.T., and So, P.L. Model predictive voltage  control for single-inductor multiple-output DC-DC  converter with reduced cross regulation", IEEE Trans.  Ind. Electron., 63(7), pp. 4187{4197 (2016).  53. Shen, Z., Chang, X., Wang, W., Tan, X., Yan, N., and  Min, H. Predictive digital current control of singleinductor  multiple-output converters in CCM with low  1642 M. Hejri/Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1621{1642  cross regulation", IEEE Trans. Power Electron., 27(4),  pp. 1917{1925 (2012).  54. Dasika, J.D., Bahrani, B., Saeedifard, M., Karimi,  A., and Rufer, A. Multivariable control of singleinductor  dual-output buck converters", IEEE Trans.  Power Electron., 29(4), pp. 2061{2070 (2014).  55. Trevisan, D., Mattavelli, P., and Tenti, P. Digital control  of single-inductor multiple-output step-down DCDC  converters in CCM", IEEE Trans. Ind. Electron.,  55(9), pp. 3476{3483 (2008).  56. Senesky, M., Eirea, G., and KOO, T.J. Hybrid  modeling and control of power electronics", Hybrid  Systems: Computations and Control, Lecture Notes in  Computer Science, Springer, pp. 450{465 (2003).  57. Mari_ethoz, S., Alm_er, S., B^aja M., et al. Comparison  of hybrid control techniques for buck and boost DCDC  converters", IEEE Trans. Control Syst. Technol.,  18(5), pp. 1126{1145 (2010).  58. Hejri, M. and Mokhtari, H. Hybrid predictive control  of a DC-DC boost converter in both continuous and  discontinuous current modes of operations", Optim.  Contr. Appl. Met., John Wiley and Sons, Inc., 32(3),  pp. 270{284 (2011).  59. Hejri, M. and Mokhtari, H. Hybrid modeling and  control of a DC-DC boost converter via Extended  Mixed Logical Dynamical systems (EMLDs)", IEEE  5th Power Electronics, Drive Systems and Technologies  Conference (PEDSTC), pp. 373{378 (2014).  60. Hejri, M. and Mokhtari, H. Global hybrid modeling  and control of a buck converter: a novel concept", Int.  J. Circ. Theor. App., John Wiley and Sons, Inc., 37(9),  pp. 968{986 (2009).  61. Hejri, M. and Giua, A. Hybrid modeling and control  of switching DC-DC converters via MLD systems",  IEEE 7th International Conference on Automation  Science and Engineering, Trieste, Italy, pp. 714{719  (2011).  62. Hejri, M. Global hybrid modeling and control of a  DC-DC buck-boost converter via mixed logical dynamical  systems", Iranian Journal of Electrical and  Computer Engineering, 17(1), pp. 1{12 (2019) (In  Persian).