
Scientia Iranica D (2021) 28(3), 1621{1642

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

On the global practical stabilization of discrete-time
switched a�ne systems: Application to switching power
converters

M. Hejri�

Department of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, P.O. Box 51335-1996, Iran.

Received 11 February 2020; received in revised form 24 August 2020; accepted 3 October 2020

KEYWORDS
Discrete-time switched
a�ne systems;
Stabilization;
Bilinear Matrix
Inequalities (BMIs);
DC-DC switching
power converters;
Practical stability.

Abstract. This paper presents new su�cient conditions as a set of Bilinear Matrix
Inequalities (BMIs) for the globally practical stabilization of discrete-time switched a�ne
systems. The main contribution of the current research involves proposing certain stability
conditions based on a common quadratic Lyapunov function that can be used to stabilize
the discrete-time switched a�ne systems around a desired equilibrium point for which it
is not required to �nd any Schur stable convex combination of operating modes as a pre-
processing stage. To this end, special algorithms are required for resolving an NP-hard
problem. It is found that the existing two-stage stabilization methods based on a pre-
calculation of a Schur stable convex combination of operating modes can be simpli�ed
into a single-stage method by which a high degree of applicability can be obtained. The
proposed stability conditions are developed such that the size of the convergence ellipsoid is
minimized. Moreover, it is not required for the equilibrium point around which the invariant
set of attraction is constructed to be in a predetermined set of attainable equilibrium
points. The satisfactory operation of the proposed stability conditions is illustrated with
an academic example and the corresponding application to various DC-DC converters.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The general classes of hybrid dynamical systems in-
volve both controlled and uncontrolled switching phe-
nomena which make the analysis and synthesis of such
systems quite complex and challenging [1{5]. In this
regard, switched systems represent a special form of
general hybrid dynamical systems that contain only
controlled switching phenomena. Although switch-
ing patterns are restricted in this subclass of hybrid
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systems, many engineering and practical real-world
systems can still fall into this class of hybrid systems
of which one can mention power systems and power
electronics, automotive control, aircraft and air-tra�c
control, and network control systems [6]. Although
switched systems have been under scrutiny for long the
instances of which can be found in a number of books
[6{9] and survey papers [10{13], most of such works in
this domain assume a common equilibrium point for
all isolated subsystems. On the other hand, one of
the most important subclasses of switched systems is
the switched a�ne systems that are very common in
practice, especially in power electronics area [14{19].

The main feature of switched a�ne systems is the
existence of an a�ne term associated with each subsys-
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tem that keeps the equilibrium points of various a�ne
subsystems from coinciding with each other. This im-
plies that in a continuous-time domain, to maintain the
state trajectories at a desired equilibrium point which
is not necessarily aligned with the equilibrium point
of each subsystem, the switching frequency approaches
in�nity [20,21]. It should be noted that such arbitrar-
ily high-frequency switching may occur either during
steady-state chattering when approaching the operating
point or transient chattering due to the presence of
sliding modes in the proposed controller [22]. However,
such arbitrarily high-frequency switching employed to
achieve asymptotic stability in the continuous time
domain is not desirable from a practical point of view
due to the possibility of equipment damage. To solve
this problem in the continuous-time domain, a common
practice is to consider an upper bound for the switching
frequency and analyze the overall system as a sampled
data switching system [23,24]. In some areas of relevant
literature, this technique is introduced with the notion
of a minimum dwell time by which the time interval
between any two switching instants is guaranteed to
not be smaller than a positive number called dwell time
[25]. The limitation of switching frequency between
various subsystems implies that the state trajectories
converge to a region around the desired equilibrium
instead of convergence to the equilibrium itself. This
issue is re
ected as the concept of practical stability in
the literature [26{28].

In parallel with continuous time analysis and
synthesis of switched a�ne systems, there are a few
works dealing with the analysis of these systems in the
discrete time setting [20,21,29,30]. Since any controller
implementation is made via computers and discrete-
time samplers nowadays, discrete-time systems and
their computer-based control are of particular impor-
tance. While stability conditions were formulated
as a set of Bilinear Matrix Inequalities (BMIs) and
Linear Matrix Inequalities (LMIs) in [20,21], a non-
LMI based approach was established in [29,30]. Due
to the capability and 
exibility of LMIs and BMIs
in formulation of various problems as well as their
nice theoretical properties, they have received wide
acceptance in academia and industry to formulate
many optimization and control problems [31,32]. In
this regard, the present paper provides the stability
conditions based on a set of BMIs.

In [20], practical stability conditions were pro-
posed for discrete-time switched a�ne systems via a
common quadratic Lyapunov function. Compared to
the present work, there are some limitations to the
derived stability conditions in [20]. One limitation is
that the invariant set of attraction must contain an
equilibrium point that belongs to a predetermined set
of attainable ones. This is a problem for the usability
of the proposed conditions because these equilibrium

points are generated via a Schur stable matrix calcu-
lated through the convex combination of each a�ne
subsystem. On the other hand, checking the existence
of a stable matrix as a convex combination of a family
of matrices needs special algorithms and is an NP-hard
problem [33]. Furthermore, in [20], the proposed stabil-
ity conditions require a two-stage controller synthesis
process: �rst, �nding Lagrange multipliers � such that
A� is schur stable and second, utilizing these multi-
pliers in a set of LMI or BMI conditions to �nd other
unknown variables. Unfortunately, the implementation
of the �rst stage involving the calculation of a Schur
stable matrix with the respective weighting coe�cients
needs special algorithms and it is an NP-hard problem.
On the other hand, in [20], no constructive approach
was proposed to the calculation of such coe�cients that
weakened the applicability of the proposed LMI/BMI
conditions. These limitations were addressed in [21]
where the authors presented less conservative stability
conditions via multiple Lyapunov functions. However,
to achieve an invariant set of attraction, the authors
used a rather complex two-stage algorithm using two
di�erent theorems with a large number of unknown
variables. Of note, even in the continuous time domain,
the existing works that do not need to precalculate a
Hurwitz convex combination of a�ne subsystems uti-
lize multiple Lyapunov functions [23,34{36]. However,
compared to the single Lyapunov method, the stability
conditions derived from multiple Lyapunov techniques
represent more complicated matrix inequalities with
many additional tuning parameters [23]. Therefore, in
terms of complexity and usability, it is of particular
importance to derive the stability conditions based
on a single Lyapunov function without any need for
determining a stable matrix as a convex combination
of the a�ne subsystems in a preprocessing stage. This
is the main mission and contribution of the present
work.

In this respect, to the best of our knowledge,
it is for the �rst time that the common quadratic
Lyapunov function has been adopted in the context
of the stabilization of discrete-time switched a�ne
systems around a desired equilibrium point without
belonging to any speci�c set and guaranteeing the
invariance and attractive properties of a convergence
set simultaneously. Moreover, in contrast to the
existing two-stage stabilization methods, the stabiliza-
tion process in the present work is made in a single
stage without any need for pre-calculating a set of
coe�cients � such that A� is schur stable. Indeed, the
calculation of these variables is embedded inside the
proposed BMI conditions. These advantages enlarge
the application domain of the proposed stabilization
technique.

Of note, although the proposed single-stage sta-
bility conditions are still BMI problems and computa-
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tionally demanding, there are several advantages and
motivations for the proposed control design method.

First, let us assume that there is a tool that
can �nd the global optimum solution to the BMI-
constrained optimization problems. Such an assump-
tion is reasonable at least for small-scale problems
[37]. In the existing two-stage control design, �rst, we
need to �nd suitable convex combination multipliers
that yield Schur stability for the convex combination
of the system matrices. Next, we need to solve a
non-convex BMI problem to �nd the remaining set of
unknown variables. However, this process should be
repeated corresponding to all possible values of the
convex combination multipliers to �nd the ultimate
global optimum solution. One needs to implement the
global optimization problem only once in the single-
stage design and it is not required to run the repetitive
global optimization programming. Therefore, �nding
the global optimal solution in the single-stage design is
easier and more straightforward than that in the two-
stage one, at least from the implementation point of
view.

Second, although BMI formulation for the con-
trol problems is not without its drawbacks and the
major concern is related to the resulting non-convex
optimization problem, the BMI formulation is still very
important. The main advantage and attraction of
the BMI formulation is related to its simplicity and
generality. Moreover, it can easily accommodate many
practical constraints during the controller synthesis for
a physical plant. In addition, a wide range of the
important robust control synthesis problems, even in
the case of simple linear systems, are formulated in the
BMI framework [38].

Finally, it should be noted that e�cient BMI
formulations play a key role between optimization
techniques and solve many important control problems.
One can always use the available nonlinear optimiza-
tion techniques that at least ensure convergence to a
local optimum solution. Even more, there are many
works in the literature to �nd the global optimum point
via global optimization methods such as various branch
and bound techniques. A set of available methods can
be found in [37] and references therein. Therefore,
any progress in the classical nonlinear programming
techniques from the computational point of view will
lead to increased popularity and application domain of
the BMI formulations.

According to the foregoing discussions, the main
goal of this paper is to present new su�cient conditions
based on a common quadratic Lyapunov function for
the global practical stability of discrete-time switched
a�ne systems by which the following properties are
satis�ed:

� Stabilization is made around any desired equilibrium

point which does not belong to any predetermined
set of attainable equilibrium points.

� In contrast to the existing two-stage stabilization
methods, the proposed stabilization method is de-
veloped in a single stage in a sense that it is not
required to compute any Schur stable matrix as a
convex combination of a family of matrices in the
pre-processing stage.

Notation. R, Z�0 are used to denote the set of real
and nonnegative integer numbers, respectively. Rn and
Rm�n denote the set of real-valued n-dimensional col-
umn vectors and m� n matrices, respectively. We use
In and 0m�n to denote the n�n identity matrix and the
m� n zero matrix, respectively. If � 2 Rk is a vector,
then �i is the ith element of �. We use 8 and 9 to denote
\for all" and \there exists", respectively. ) is used to
denote logical implication. For matrix M 2 Rm�n,
MT denotes its transpose, and for a square matrix
M 2 Rn�n, M�1, tr(M), and �i(M) are inverse,
trace and ith eigenvalue of M , respectively. Moreover
�max(M) and �min(M) denote the largest and smallest
eigenvalues of M , respectively. M � 0 and M � 0
illustrate that M is negative de�nite and negative semi-
de�nite matrices, respectively. In symmetric matrices,
� denotes each of their symmetric blocks. Assuming the
setK = f1; : : : ; Ng as a collection of theN �rst positive
integer numbers, the convex combination of matrices
fM1; : : : ;MNg is denoted by M� =

P
i2K �iMi with

� 2 � where � := f� 2 RN j�i � 0;
P
i2K �i = 1g is the

unitary simplex.

2. Problem statement

The discrete-time switched a�ne system is considered
as follows:

x(k + 1) = A�(x(k))x(k) + b�(x(k)); x(0) = x0; (1)

where k 2 Z�0 is the discrete-time instant, x(k) 2
Rn is the state and �(x(k)) : Rn ! K is a state-
dependent switching function that selects one of the
N available subsystems (Ai; bi); i 2 K at any instant
of time k 2 Z�0. It is intended to design the state-
dependent switching function �(x(k)) such that to
impose asymptotic convergence of the state trajectories
x(k); k 2 Z�0, to a neighborhood of the desired equilib-
rium point, for all initial conditions x0 2 Rn. In general
such equilibrium point does not coincide with any other
of isolated subsystems, namely, xei = (In � Ai)�1bi.
In some pieces of literature, in either continuous-time
[14,39{41] or discrete-time [20] domain, it is assumed
that this point belongs to a speci�c set of attainable
equilibrium points. For instance, in [20], this set is
de�ned by Xe = fxe 2 Rnjxe = (In �A�)�1b�; � 2 Sg
with S � � such that A� is Schur stable. In the present
paper, in contrast to the existing literature based on the
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single Lyapunov function, such a limitation is relaxed
and a di�erent equilibrium point xe =2 Xe may be
chosen. Furthermore, it is not required to compute any
Schur stable matrix A� by which xe is calculated. This
is technically valuable because calculation of a stable
matrix as a convex combination of operating modes
needs special algorithms, thus making it an NP-hard
problem [33]. Given an equilibrium point xe, we can
always reformulate the stabilization problem around
the null equilibrium point by de�ning the error state
vector e(k) = x(k) � xe; 8k 2 Z�0 that follows the
error dynamics below:

e(k + 1) = A�(e(k))e(k) + l�(e(k)); e(0) = e0; (2)

with �(e(k)) = �(x(k)�xe), li = (Ai� In)xe + bi;8i 2
K. We plan to design the switching function �(e(k))
via a common quadratic Lyapunov function v(e(k)) =
e(k)TPe(k), P = PT � 0 such that the ellipsoid
E(P ) = fe(k) 2 Rnje(k)TPe(k) � 1g with the center
in the origin is an invariant set of attraction for the
switched a�ne system (2) according to the following
de�nition.

De�nition 1. The ellipsoid E(P ) = fe 2 RnjeTPe �
1g is an invariant set of attraction in a given domain
D � Rn for System (2) by the switching function
�(e(k)) if the following conditions are simultaneously
satis�ed:

(a) Invariant property: If e(k) 2 E(P ) then, e(k +
1) = A�(e(k))e(k) + l�(e(k)) 2 E(P ).

(b) Attractive property: If e(0) 2 D � E(P ), then
there exist T = T (e(0)) > 0 and E(P̂ ) � E(P )
with P̂ = P̂T � 0, such that e(T ) 2 E(P ) and
e(k) 2 E(P̂ ), 8k � T .

Based on Condition (a), the trajectories starting
from E(P ) are never escaped from it; therefore, due
to the boundedness of E(P ), they will remain around
the null set point. If Condition (a) is satis�ed it
is called that the ellipsoid E(P ) is an invariant for
System (2) under switching function �(e(k)). Fur-
thermore, according to Condition (b), the trajectories
starting outside E(P ) evolve in time towards the point
e(k) = 0n�1; however, they never reach it. According
to this condition, the state trajectories eventually enter
the ellipsoid E(P ), but they may leave it. On the other
hand, they will remain inside a larger ellipsoid E(P̂ ). In
this case, the ellipsoid E(P ) is considered attractive for
System (2) under switching function �(e(k)). Clearly,
if Condition (a) is satis�ed, then E(P̂ ) = E(P ) in
Condition (b).

It should be noted that the notion of the set
attraction in De�nition 1 is a bit di�erent from those
available in the literature. In [20,42{44], a set M is
considered attraction set with respect to System (2) if

any solution e(k) of System (2) starting from e(0) =2M
approaches the set M when k approaches in�nity, i.e.:

e(0) =2M ) lim
k!1 distfe(k);Mg = 0; (3)

where distfe(k);Mg = inf�2M j� � e(k)j. According
to [26,27,29,45], the asymptotic practical stability of a
set M implies that for the state trajectories starting
outside M , there is a �nite time T > 0 such that the
trajectory e(k) is ultimately inside M . However, un-
fortunately, the existing de�nition of the set attraction
in Eq. (3) does not imply such property. In fact, it
is only guaranteed that the distance between the state
trajectory e(k) and the set M approaches zero, but it
never enters M . On the other hand, De�nition 1 falls in
the category of practical stability by which it is meant
that the trajectories either enter the ellipsoid E(P ) or
remain inside it. De�nitions 2, 3, and 4 clarify these
notions.

De�nition 2. System (2) is locally practically stable
with respect to an invariant set of attraction E(P ) =
fe 2 RnjeTPe � 1; P = PT � 0g in the domain
D under switching function �(e(k)) if there exist sets
E(P ) and D satisfying conditions of De�nition 1 and
E(P ) = D.

Of note, according to De�nition 2, the concept of
local practical stability is aligned with only invariance
property of the ellipsoid E(P ) introduced in De�ni-
tion 1 for which only Condition (a) must be satis�ed.

De�nition 3. System (2) is practically stable in the
large with respect to an invariant set of attraction E(P )
in the domain D under switching function �(e(k)) if
there exist sets E(P ) and D satisfying conditions of
De�nition 1 and E(P ) � D.

De�nition 4. System (2) is practically stable in the
whole or globally practically stable if it is practically
stable in the large and that D = Rn.

De�nition 5. In De�nitions 2{4, the set D � E(P )
is called domain of attraction of System (2) under
switching rule �(e(k)).

Lemma 1 states that under what conditions Sys-
tem (2) is practically stable in the large in the sense of
De�nition 3 via Lyapunov functions.

Lemma 1. System (2) is practically stable in the large
in a given domain D � Rn containing the origin in the
sense of De�nition 3 if there exist an ellipsoid E(P ) �
D and a scalar function v(e(k)) : Rn ! R such that:

(a) If e(k) 2 E(P ), then e(k + 1) = A�(e(k))e(k) +
l�(e(k)) 2 E(P );
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(b) If e(k) 2 D � E(P ), then v(e(k + 1)) � v(e(k)) =
�v(e(k)) � �
 < 0 where 
 is a positive number;

(c) v(e(k)) is positive de�nite in D � E(P ), i.e.,
v(e(k)) > 0 when e(k) 2 D � E(P ).

Proof. Condition (a) is the same as Condition (a)
of De�nition 1 and therefore, ful�lls the invariant
property of the ellipsoid E(P ). To prove the attraction
property of the set E(P ), according to Condition (b) of
De�nition 1 it is necessary to demonstrate that upon
starting from any initial state e(0) 2 D � E(P ), there
exists a �nite time T = T (e(0)) > 0 such that for
k � T , the state e(k) enters the ellipsoid E(P ), i.e.,
9T > 0 such that e(k) 2 E(P ) for k � T . This can be
demonstrated by contradiction as follows. Assume that
the state trajectory e(k) never intersects with E(P ).
Then, at any instant k outside E(P ) and according to
Condition (b), we have v(e(k+1))�v(e(k)) � �
 < 0.
In view of this, one can write the following:

v(e(k)) = v(e(0)) +
k�1X
n=0

(v(e(n+ 1)� v(e(n)))

� v(e(0))� k
: (4)

The right-hand side of Eq. (4) will be eventually
negative when k takes large values. This leads to
contradiction against Condition (c) where it is assumed
that v(e(k)) is positive de�nite on D � E(P ). As a
result, the state trajectory e(k) will eventually enter
the ellipsoid E(P ) at �nite time T and remains within it
(8k � T ) due to the Condition (a). Therefore, E(P ) is
an invariant set of attraction according to De�nition 1
and as a result, according to De�nition 3, System (2)
is practically stable in the large in the domain D and
under switching function �(e(k)). Thus, the proof is
completed.�

Remark 1. In Lemma 1, Conditions (b) and (c)
imply Condition (b) of De�nition 1. In the proof of
Lemma 1, it was veri�ed that any trajectory starting
from outside ellipsoid E(P ) would eventually enter it
after �nite steps T . Now, if the invariance condition
is not satis�ed, then the trajectory may leave E(P ).
However, it is guaranteed that there is a larger ellipsoid
E(P̂ ) � E(P ) with P̂ = P̂T � 0, such that e(k) 2 E(P̂ ),
8k � T . This can be shown by contradiction. Let us
assume that there is no ellipsoid and the trajectories
will be unbounded after reaching inside E(P ). Then,
there would exist T2 > T1 > T such that e(T2) =2 E(P ),
e(T1) =2 E(P ), and v(e(T2)) > v(e(T1)). However, this
cannot occur since v(e(k)) is strictly decreasing outside
ellipsoid E(P ).

Remark 2. De�nitions 1{5, Lemma 1 and its proof
can be applied to the autonomous nonlinear switched

systems without a common equilibrium point where the
functions fi(e(k)), i 2 K in e(k + 1) = fi(e(k))
do not necessarily need to be in the a�ne form as
in System (2). In this context, one should replace
Condition (b) in De�nition 1 and Lemma 1 by the
following one: (b) If e(k) 2 E(P ), then e(k + 1) =
f�(e(k))(e(k)) 2 E(P ).

Remark 3. In Lemma 1, if D = Rn, then System (2)
is globally practically stable according to De�nition 4.

3. Stability analysis

In this section, the main result of this paper is
presented. As discussed earlier, we are planning to
design a switching rule �(e(k)); k 2 Z�0 for System (2)
that drives the state trajectories towards the ellipsoid
E(P ) = fe 2 RnjeTPe � 1g with a center in the origin.
In this paper, a min-type state feedback switching
function is used as follows:

�(e(k)) = arg min
i2K v(Aie(k) + li): (5)

Lemmas 2 and 3 are frequently used in proving
Theorem 1.

Lemma 2. For a set of functions fi : D ! R, D �
Rn, i 2 K as f1(x),: : :,fl(x),: : :,fN (x), the following
statements are equivalent.

i) 8x 2 D; 9l 2 K; such that fl(x) < 0;

ii) 8x 2 D; 9(�1 � 0; : : : ; �l � 0; : : : ; �N � 0) such
that

P
i2K �ifi(x) < 0, and

P
i2K �i > 0.

Proof. i)) ii)
Let us assume that 8x 2 D � Rn, at least one of
the functions, say fl(x), l 2 K satis�es the inequality
fl(x) < 0. Now, by choosing the set of parameters �l >
0; �i = 0; i 6= l, i 2 K, one can conclude

P
i2K �ifi(x) =

�lfl(x) < 0 and
P
i2K �i = �l > 0.

ii)) i)
This can be shown by contradiction: Let us assume
9x 2 D � Rn such that all fl(x), l 2 K ful�ll fl(x) � 0.
By multiplication of these inequalities to �l � 0 such
that

P
i2K �i > 0, and summing up all the terms, one

can reach
P
l2K �lfl(x) � 0. However, this contradicts

the fact that 8x 2 Rn there exists a set of nonnegative
parameters �l � 0, l 2 K such that

P
i2K �ifi(x) < 0.

Lemma 3 is a nonstrict form of Lemma 2.

Lemma 3. For a set of functions fi : Rn ! R, i 2
K as f1(x),: : :,fl(x),: : :,fN (x), the following statements
are equivalent:

i) 8x 2 Rn, 9l 2 K such that fl(x) � 0;
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ii) 8x 2 Rn;9(�1 � 0; : : : ; �l � 0; : : : ; �N � 0) such
that

P
i2K �ifi(x) � 0, and

P
i2K �i > 0.

Proof. The proof is similar to that of Lemma 2 and is
omitted for the sake of brevity.�

Theorem 1 provides su�cient conditions for which
the switched a�ne system (2) under switching function
(5) is globally practically stable in the sense of De�ni-
tion 1.

Theorem 1. If there exist matrix P = PT � 0 and
nonnegative numbers �1i � 0, �2i � 0, i 2 K, �1 � 0,
�2 � 0 satisfying the system of inequalities:�

M1 � �1P �
M2 M3 + �1 �Pi2K �1i

�
4 0; (6)�

�2P + ~M1 �Pi2K �2iP �
~M2 ~M3 � �2

�
� 0; (7)X

i2K
�1i > 0; (8)

X
i2K

�2i > 0; (9)

where:

M1 =
X
i2K

�1iATi PAi; (10)

M2 =
X
i2K

�1ilTi PAi; (11)

M3 =
X
i2K

�1ilTi Pli; (12)

~M1 =
X
i2K

�2iATi PAi; (13)

~M2 =
X
i2K

�2ilTi PAi; (14)

~M3 =
X
i2K

�2ilTi Pli; (15)

then the switching strategy in Eq. (5) ensures that the
ellipsoid E(P ) = fe 2 RnjeTPe � 1g with k 2 Z�0
is invariant set of attraction for discrete-time switched
a�ne system in Eq. (2).

Proof. It is shown that Relations (6) and (8) imply
Condition (a) of Lemma 1, while Relations (7) and
(9) ful�ll Condition (b) via v(e(k)) = e(k)TPe(k)
satisfying Condition (c) of Lemma 1. Pre-multiplying
Relation (6) by [e(k)T 1] and post-multiplying it by
[e(k)T 1]T , one can reach:

�
e(k)

1

�T �M1 � �1P �
M2 M3 + �1 �Pi2K �1i

� �
e(k)

1

�
� 0; 8e(k) 2 Rn: (16)

Relation (16) can be rewritten as Relation (17):�
e(k)

1

�T �M1 �
M2 M3 �Pi2K �1i

� �
e(k)

1

�
� �1

�
e(k)

1

�T
�
P �

01�n �1

� �
e(k)

1

�
� 0; 8e(k) 2 Rn: (17)

Using S-procedure [31,37], Relation (17) implies Rela-
tion (18).�

e(k)
1

�T � P �
01�n �1

� �
e(k)

1

�
� 0)

�
e(k)

1

�T
�
M1 �
M2 M3 �Pi2K �1i

� �
e(k)

1

�
� 0: (18)

By substituting M1, M2, and M3 from Eqs. (10){(12)
into Relation (18), one can write:

e(k)TPe(k) � 1)X
i2K

�1i(e(k)TATi PAie(k)

+lTi PAie(k) + e(k)TATi Pli + lTi Pli � 1) � 0:
(19)

According to Relation (8), since
P
i2K �1i > 0, �1i �

0; i 2 K, Lemma 3 implies that Relation (19) can be
rewritten as:
e(k)TPe(k) � 1) 9i 2 K such that

e(k)TATi PAie(k) + lTi PAie(k) + e(k)TATi Pli

+ lTi Pli � 1 � 0: (20)

Relation (20) implies that for each e(k) satisfying
e(k)TPe(k) � 1, there exists an index i such that
e(k)TATi PAie(k) + lTi PAie(k) + e(k)TATi Pli+ lTi Pli�
1 � 0. This is because the switching rule is not constant
inside the set E(P ) = fe(k) 2 Rnje(k)TPe(k) � 1g.
This statement also holds for the next similar logical
expressions. After performing some algebra on the
right-hand side of Relation (20), one can reach:

e(k)TPe(k) � 1) 9i 2 K such that

(Aie(k) + li)T P (Aie(k) + li) � 1; (21)

which can be rewritten as:
e(k)TPe(k) � 1) 9i 2 K such that

v(Aie(k) + li) � 1: (22)

Based on the switching rule in Eq. (5), since v(A�e(k)+
l�) � v(Aie(k) + li), 8i 2 K, from Relation (22), one
can conclude that:
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e(k)TPe(k) � 1) v(A�(e(k))e(k)+l�(e(k)))�1: (23)

Since, according to System (2), e(k+ 1) = A�(e(k))e(k)
+l�(e(k)), Relation (23) can be rewritten as follows:

e(k)TPe(k) � 1) e(k + 1)TPe(k + 1) � 1: (24)

Relation (24) states that whenever e(k) 2 E(P ), e(k +
1) 2 E(P ) as well. Thus, according to Condition (a)
of Lemma 1, Relation (24) implies that the ellipsoid
E(P ) = fe 2 RnjeTPe � 1g is an invariant set for
the switched a�ne system (2) under switching rule
(Eq. (5)). In the sequel, we plan to prove the attraction
of the set E(P ) via Relations (7) and (8) and v(e(k)) =
e(k)TPe(k). Pre-multiplying Relation (7) by [e(k)T 1]
and post-multiplying it by [e(k)T 1]T , one can obtain:�

e(k)
1

�T ��2P + ~M1 �Pi2K �2iP �
~M2 ~M3 � �2

�
�
e(k)

1

�
< 0; 8e(k) 2 Rn: (25)

Relation (25) can be rewritten into Relation (26):�
e(k)

1

�T � ~M1 �Pi2K �2iP �
~M2 ~M3

� �
e(k)

1

�
� �2�

e(k)
1

�T � �P �
01�n 1

� �
e(k)

1

�
< 0;

8e(k) 2 Rn: (26)

Using S-procedure, Relation (26) is substituted into
Relation (27):�

e(k)
1

�T � �P �
01�n 1

� �
e(k)

1

�
< 0)�

e(k)
1

�T � ~M1 �Pi2K �2iP �
~M2 ~M3

� �
e(k)

1

�
< 0: (27)

By substituting ~M1, ~M2, and ~M3 from Eqs. (13){(15)
into Relation (27) and after doing some algebra, one
can reach:

e(k)TPe(k) > 1)X
i2K

�2i[(Aie(k) + li)T

P (Aie(k) + li)� e(k)TPe(k)] < 0: (28)

According to Relation (9), since
P
i2K �2i > 0, �2i �

0; i 2 K, Lemma 2 implies that Relation (28) can be
rewritten as follows:

e(k)TPe(k) > 1)9i2K such that

(Aie(k)+li)TP (Aie(k)+li)� e(k)TPe(k)<0: (29)

Relation (29) implies that for each e(k) to satisfy
e(k)TPe(k) > 1, there exists an index i such that
(Aie(k) + li)TP (Aie(k) + li) � e(k)TPe(k) < 0.
This is because outside the set E(P ) = fe(k) 2
Rnje(k)TPe(k) � 1g, the switching function is not
constant. According to the switching rule (5), we have:

(A�(e(k))e(k) + l�(e(k)))TP (A�(e(k))e(k) + l�(e(k)))

� (Aie(k) + li)TP (Aie(k) + li): (30)

From Relations (29) and (30), one can reach:

e(k)TPe(k) > 1) (A�(e(k))e(k) + l�(e(k)))T

P (A�(e(k))e(k) + l�(e(k)))� e(k)TPe(k)

� (Aie(k) + li)TP (Aie(k) + li)

�e(k)TPe(k) < 0; (31)

or equivalently:

e(k)TPe(k) > 1) v(A�(e(k))e+ l�(e(k)))� v(e(k))

= v(e(k + 1))� v(e(k)) = �v(e(k))

� (Aie(k) + li)TP (Aie(k) + li)

�e(k)TPe(k) < 0; (32)

which implies some part of Condition (b) in Lemma
1. According to item (b) of Lemma 1, we still need to
�nd a positive number 
 such that �v(e(k)) � �
 < 0
when e(k) 2 D � E(P ). In this regard, we de�ne the
following:

�j(e(k)) = e(k)TPe(k)� (Aje(k) + lj)T

P (Aje(k) + lj); j 2 S; (33)

S = fj 2 Kj�v(e(k)) � ��j(e(k)) < 0g: (34)

According to Relation (32), jSj � 1 and �j(e(k)) > 0
when e(k) =2 E(P ). Now, we de�ne the function �(s)
as follows:

�(s) = inf
s � jje(k)jj
s � 0

e(k) =2 E(P )

min
j2S �j(e(k)); (35)

The function �(jje(k)jj) is nondecreasing and positive
de�nite when e(k) =2 E(P ). Moreover, according to
Relations (35) and (32), one can write:

�v(e(k)) ���j(e(k)) ���(jje(k)jj)<0; j 2 S: (36)
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According to Relation (35), since e(k) =2 E(P ),
e(k)TPe(k) > 1. For a symmetric matrix P = PT 2
Rn�n, we have e(k)TPe(k) � �max(P )jje(k)jj2 which
in combination with e(k)TPe(k) > 1 yields jje(k)jj �

1p
�max(P )

. As a result, due to the nondecreasing nature

of function �(s) in Relation (35), one can reach:

�(jje(k)jj) � �(
1p

�max(P )
) = 
;

which together with Relation (36) leads to the follow-
ing:

�v(e(k)) � ��j(e(k)) � ��(jje(k)jj) � �
 < 0;

j 2 S; (37)

which meets Condition (b) in Lemma 1. Since P =
PT � 0, v(e(k)) = e(k)TPe(k) is positive de�nite in
the whole state space unless e(k) = 0n�1 which satis�es
Condition (c) of Lemma 1. Therefore, all conditions of
Lemma 1 are satis�ed. Since during proof of Theorem
1 no restriction is imposed on the selection of e(k),
i.e., e(k) 2 Rn, as a result D = Rn and according
to Remark 3 the switched a�ne system (2) is globally
practically stable under switching rule (5) and the proof
is concluded.�

Remark 4. It should be noted that the inequalities
appearing in Relations (6) and (7) are not convex with
respect to �i, P , �1, and �2 and they are a set of
BMIs. Nevertheless, the LMI and BMI conditions
proposed in [20] are developed in a double-stage process
during which at �rst it is necessary to calculate a set
of coe�cients �i 2 � such that A� =

P
i2K �iAi is a

Schur stable matrix. Next, upon utilizing these pre-
calculated coe�cients within a set of LMI and BMI
conditions, other unknown variables are computed.
As already discussed, unfortunately, the calculation
of such a stable matrix with the respective weighting
coe�cients needs special algorithms, thus making it an
NP-hard problem. However, as it can be observed,
such a requirement does not appear in the conditions
of Theorem 1 and stabilization process is made in a
single stage without need for the precalculation of a set
of coe�cients �2i 2 � such that A� =

P
i2K �2iAi is

a Schur stable matrix. Obviously, this does not mean
that such a stable convex combination does not exist.
Corollary 1 highlights this issue.

Corollary 1. Condition (7) in Theorem 1 implies
the existence of a Schur stable convex combination of
subsystem matrices A� =

P
i2K �2iP

i2K �2i
Ai.

Proof. According to the Schur complements [31] for
strict inequalities, Condition (7) takes Relation (38) as
a necessary condition.

X
i2K

�2iATi PAi �
X
i2K

�2iP � 0: (38)

In [46], it was shown that:�
ATi PAi ATi P
PAi P

�
� 0: (39)

By multiplying Inequality (39) by �2i � 0, and
summing up for all i 2 K, one can reach:�P

i2K �2iATi PAi
P
i2K �2iATi PP

i2K �2iPAi P
P
i2K �2i

�
� 0: (40)

Performing the Schur complements for non-strict in-
equalities [31] with respect to the term in the second
row and second column and noting that

P
i2K �2i > 0,

one can reach:X
i2K

�2iATi PAi � (
P
i2K �2iATi )PP�1P (

P
i2K �2iAi)P

i2K �2i

� 0: (41)

Now, from Relations (38) and (41), one can infer:

(
P
i2K �2iATi )P (

P
i2K �2iAi)

(
P
i2K �2i)2 � P; (42)

Relation (42) can be rewritten as: X
i2K

�2iP
i2K �2i

ATi

!
P

 X
i2K

�2iP
i2K �2i

Ai

!
� P:

(43)

From Relation (43), it can be concluded A� =P
i2K �2iP

i2K �2i
Ai is Schur stable where �2iP

i2K �2i
2 �. In

other words, in the proposed stability conditions, the
Schur stability of matrix A� is a necessary condition
for attraction condition (7) of Theorem 1.�

4. Minimization of the invariant set of
attraction

There are two main objective functions for the size
minimization of ellipsoid E(P ) = fe 2 RnjeTPe �
1g, k 2 Z�0 under the proposed BMI constraints
in Theorem 1. One technique is to minimize the
ellipsoid volume through the minimization of det(P�1)
[19,20,31]. In [42], it is discussed since:

det(P�1) =
nY
i=1

�i(P�1) =
nY
i=1

�2
i (P

�1); (44)

where �i(P�1) is the distance from the center to
each semiaxis of the ellipsoid E(P ), the productQn
i=1 �i(P

�1) may take a very large value of one
semiaxis, say �j(P�1), while all others may take very
small values. As a result, minimum volume criterion
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through the minimization of det(P�1) may not ensure
good performance in all directions.

Another approach is to use the trace of the matrix
P�1 that de�nes the sum of the squares of the ellipsoid
E(P ) semiaxes as follows [42]:

min
P�0;�1i�0;�2i�0;�1�0;�2�0

tr(P�1)

subject to Relations (6)� (9): (45)

Since the tool YALMIP/MATLAB [47] was not able
to handle the objective function tr(P�1), we modi�ed
it such that the software limitation could be relaxed
and the main property of the size minimization be
preserved. Note that since P � 0, we have:

tr(P�1) =
i=nX
i=1

�i(P�1) � n max
i=1;:::;n

�i(P�1)

= n�max(P�1): (46)

Therefore, on the one hand, the minimization of
the maximum eigenvalue of P�1 guarantees the
minimization of the corresponding maximal semiaxis
�max(P�1) =

p
�max(P�1) and minimizes an upper-

bound for tr(P�1). On the other hand, the minimiza-
tion of the �max(P�1) is equivalent to the following
minimization problem [32]:

min t
subject to In � tP � 0 (47)

Accordingly, Relation (45) is replaced by the following
optimization problem:

min
P�0;�1i�0;�2i�0;i2K;�1�0;�2�0

t

subject to Relations (6)� (9)

In � tP � 0: (48)

In this paper, the optimization problem in Rela-
tion (48) is solved via the BMI solver PENBMI [48]
interfaced by YALMIP [47]. In the course of numerical
experiments in the next section, we realize that the
optimization problem in Relation (48) is still very non-
linear and non-convex in some cases to achieve suitable
and acceptable results from the PENBMI package. It
is noted that an option to limit the search space, is
to consider upper bounds to the sum of the lambda's
as
P
i2K �1i � h1; h1 > 0,

P
i2K �2i � h2; h2 > 0;

however, unfortunately, the PENBMI solver did not
converge to an acceptable solution. In this regard,
stronger equality constraints

P
i2K �1i = h1; h1 > 0,P

i2K �2i = h2; h2 > 0 are considered in Relation (48)
to limit the search space and achieve desirable results
from the solver, but at the expense of conservatism.
It should be noted that the values of h1 and h2 do
not have any e�ect on the values of the matrix P and

parameter t in the optimization problem (48); as a
result, changing their values does not change the size
of the invariant set of attraction. According to the
numerical observations with a change in h1 and h2,
the values of variables �1, �1i, �2, and �2i are scaled
proportional to the values of h1 and h2. This numerical
observation is justi�ed by Proposition 1.

Proposition 1. Assume that (�1i; �2i; �1; �2; P; t) with
i 2 K is a solution to the optimization problem of Re-
lation (48) corresponding to

P
i2K �1i = 1,

P
i2K �2i =

1. Then ( ��1i; ��2i; ��1; ��2; P; t) is the solution of the same
optimization problem corresponding to

P
i2K ��1i =

h1; h1 > 0,
P
i2K ��2i = h2; h2 > 0 where ��1 = h1�1,

��1i = h1�1i ��2 = h2�2 and ��2i = h1�2i.

Proof. In the original optimization problem (48) when
h1 = h2 = 1, we have Relations (49){(53) as shown in
Box I.

The proof follows from the multiplication of Re-
lations (49) and (51) by h1, and Relations (50) and
(52) by h2. Next, by substituting ��1 = h1�1, ��1i =
h1�1i ��2 = h2�2 and ��2i = h1�2i the set of solutions
( ��1i; ��2i; ��1; ��2; P; t) is obtained for the same optimiza-
tion problem, but for the shifted equality constraints,P
i2K ��1i = h1; h1 > 0,

P
i2K ��2i = h2; h2 > 0.

5. Examples

In this section, various examples are introduced to
illustrate the previous results. In all cases, the nu-
merical experiments are compared with the proposed
method in [20] in terms of the size and volume of the
ultimate invariant set of attraction. In this regard,
several important points should be considered.

In contrast to the pure LMI-based optimization
problems, it is a di�cult task to make a fair comparison
of BMI-based optimization problems. The reason is
that the former belongs to the category of the convex
optimization problems for which e�cient numerical
algorithms handling the practical large-scale problems
have been developed. In the convex programming,
starting from any initial point, convergence toward
a global optimum is always guaranteed and the sole
concern is the computational burden which is generally
stated in terms of the number of unknown variables and
number of LMI inequalities [49]. On the other hand,
BMI-based optimization problems are non-convex and
seeking a global optimum becomes an NP-hard prob-
lem. In most cases, the convergence of various iterative
techniques to �nd a local optimum is not guaranteed
mathematically and the choice of initial value is impor-
tant for convergence to an acceptable solution, which
is considered the main weakness of these methods [38].
In the best case, if there exists an algorithm with
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min
P�0;�1i�0;�2i�0;i2K;�1�0;�2�0

t;�P
i2K �1iATi PAi � �1P �P

i2K �1ilTi PAi
P
i2K �1ilTi Pli + �1 �Pi2K �1i

�
� 0; (49)�

�2P +
P
i2K �2iATi PAi �Pi2K �2iP �P

i2K �2ilTi PAi
P
i2K �2ilTi Pli � �2

�
� 0; (50)X

i2K
�1i = 1; (51)

X
i2K

�2i = 1; (52)

In � tP � 0: (53)

Box I

a convergence certi�cate to a local optimum starting
from any initial point, the result will be a local solution
merely. In this case, a fundamental question arises
as how to compare the local solution of a particular
problem formulation with the local solution of another
and reach a fair conclusion about the qualities of
various problem formulations in terms of the important
performance criteria such as conservatism degree.

Nevertheless, our work was compared with The-
orem 3 of [20] in terms of the size of the ultimate
invariant set of attraction. According to foregoing
discussion, it is pointed out that making a rigorous,
fair and clear-cut conclusion is a di�cult task. In
[20], a general shifted quadratic Lyapunov function
was used to ensure the global practical stabilization
of the discrete-time switched a�ne systems. While, in
our work, a simple centered Lyapunov function was
used. The BMI parametrization in [20] used more
unknown variables such as vector h and additional
matrix variable W that did not exist in our method.
In [20], it was assumed that the equilibrium point
around which the stabilization was made, belonged to
a predetermined set of attainable points. Yet, in our
work, such a limitation was relaxed and overlooked. In
[20], it was considered necessary that all scalar convex
combination variables (� vector) be �xed and given
beforehand, while such a limitation was not an issue
in the present work. An attempt was made here to
meet the BMI conditions of Theorem 3 in [20] via
PENBMI/YALMIP tool without presetting the scalar
variables �i. However, in all cases PENBMI/YALMIP
failed to yield any feasible solution. On the other hand,
the proposed conditions in our work were successfully
solved and local solutions were extracted in most cases.
Intuitively, one reason is that when the parameters �i

are not preset on their desirable values, more complex
terms including the product of three unknown variables
�i�W and matrix inverse term �Pi2K �il0iPAi(I �
A�)�1 appear in the conditions of Theorem 3 in
[20] which created a large degree of complexity and
nonlinearity in the proposed conditions of this theorem.
As a result, in all cases, the proposed conditions of
Theorem 3 in [20] were solved using the variables �i
calculated by the proposed conditions of Theorem 1
in our work. The size of the ultimate invariant set
of attraction obtained based on Theorem 3 [20] was
statistically, but not in all cases, smaller than that
of Theorem 1. This is because, as discussed earlier,
the stabilization method in [20] utilizes more unknown
variables and therefore, a higher degree of freedom.

Example 1. In the area of power electronics, Single-
Inductor Multiple-Output (SIMO) converters have at-
tracted much attention due to such advantages as
small size and low weight, low cost, great integration,
and a wide variety of applications including battery-
operated portable devices, renewable energy systems,
and electric vehicles [50]. However, due to the existence
of multiple outputs associated with each switching
mode, the operation, control, and design of such
converters are more challenging than the conventional
DC-DC buck and boost converters [51]. In this regard,
many modeling and control methods are available in
the literature to regulate the SIMO converters of which
one can mention model predictive control [52,53], state
feedback control [51], multivariable control [54], and
digital control [55]. Although a non-averaged model
was used to design the controller in [52], the stability of
the closed-loop system was not discussed analytically.
A common shortcoming of the other works is that
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they have been developed based on the approximate
averaged and linearized models by which only local
stability of the closed-loop system has been addressed.
In this context, for the �rst time, hybrid modeling and
control of power electronics converters were introduced
in [56] in which the proposed hybrid control technique
was applied to a Single-Inductor Dual-Output (SIDO)
converter as well. However, in this work, only the
local practical stability of the closed-loop system was
addressed by which only the invariant property of a safe
ball around a given set point was guaranteed. To the
best of our knowledge, the global practical stabilization
of the SIMO converters via hybrid control systems
theory has not been addressed in the literature.

A DC-DC step-up (boost) SIDO converter is
shown in Figure 1. By de�ning the state vector
x(t) = [iL(t) vA(t) vB(t)]T , the continuous dynamics
associated with each mode are _x(t) = Acix(t) + bci,
i 2 f1; 2; 3g where:

Ac1 =

240 0 0
0 � 1

RACA 0
0 0 � 1

RBCB

35 ;
Ac2 =

24 0 � 1
L 0

1
CA � 1

RACA 0
0 0 � 1

RBCB

35 ;
Ac3 =

24 0 0 � 1
L

0 1
RACA 0

1
CB 0 � 1

RBCB

35 ;
bc1 = bc2 = bc3 =

hvin
L

0 0
iT
: (54)

The circuit parameters are L = 500 �H, RA = 6:25 
,
RB = 34:1 
, CA = 800 �F , CB = 146:6 �F , and vin =
1:5 V . The sampling time is set to Ts = 10 �s and as
a result the maximum value of switching frequency is
limited to 1

2Ts = 50 kHz. The state-space matrices of
the corresponding discrete-time system can be obtained
as follows:

Ai = eAciTs ; bi =
Z Ts

0
eAcitdtbci; (55)

where i 2 f1; 2; 3g. The desired output voltages are set
to vAd = 1:875 V and vBd = 3:75 V . The steady-state

Figure 1. Single-inductor dual-output DC-DC boost
converter.

current is calculated via the energy balance equation
iLd = v2

Ad
vinRA + v2

Bd
vinRB as iLd = 0:65 A. The solution of

the optimization problem in Relation (48) with h1 =
h2 = 1 yields �11 = �21 = 0:3549, �12 = �22 = 0:4867,
�13 = �23 = 0:1585, �1 = 0:0017, �2 = 0:9983, tmin =
1:4128, with the matrix P as:

P =

24 1:6886 �0:0822 �0:1146
�0:0822 3:3647 �0:4949
�0:1146 �0:4949 0:8172

35 : (56)

The invariant set of attraction as well as the state
trajectories x(k) corresponding to various initial con-
ditions are shown in Figure 2. Figure 3 illustrates the

Figure 2. State trajectories and invariant set of
attraction for the Single Inductor Dual-Output (SIDO)
DC-DC boost converter.

Figure 3. Time pro�les of the Single Inductor
Dual-Output (SIDO) DC-DC boost converter states: (a)
Inductor current, (b) output voltage vA, and (c) output
voltage vB .
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Table 1. Ellipsoid size comparisons for the DC-DC Single Inductor Dual-Output (SIDO) boost converter.

Comparison
quantities

Theorem 1
ellipsoid size

Theorem 3 of [20]
�1 = �21P

i2K �2i

�2 = �22P
i2K �2i

�3 = �23P
i2K �2i

ellipsoid size

Theorem 1P
i2K �1i = 1P
i2K �2i = 1

Theorem 1P
i2K �1i > 0P
i2K �2i = 1

Theorem 1P
i2K �1i = 1P
i2K �2i > 0

t 1.4128 1.4323 �11 = 0:3549 �11 = 6:9319 � 10�6 �11 = 0:3549
1p

det(P )
0.4711 0.4897 �12 = 0:4867 �12 = 9:5271 � 10�6 �12 = 0:4867

�13 = 0:1585 �13 = 3:0909 � 10�6 �13 = 0:1585
�21 = 0:3549 �21 = 0:3549 �21 = 0:0278
�22 = 0:4867 �22 = 0:4867 �22 = 0:0381
�23 = 0:1585 �23 = 0:1585 �23 = 0:0124

Figure 4. Switching signals of the Single Inductor
Dual-Output (SIDO) DC-DC boost converter starting
from an initial condition at the origin.

corresponding time simulations and Figure 4 shows the
switching signals corresponding to the initial condition
in the origin.

For the speci�ed operating point, the results of
the comparison between the conditions of Theorem
1 and Theorem 3 in [20] are given in Table 1. As
discussed earlier, the BMI conditions of Theorem 3 in
[20] are solved via values of �2i obtained by solving
the conditions of Theorem 1. It should be noted
that through this selection, matrix A� is Schur stable
and these preset values satisfy the BMI conditions of
Theorem 3 in [20]. This result is con�rmed by Corollary
1. The parameter 1p

det(P )
, in Table 1 is proportional to

the volume of the respective ellipsoid as the ultimate
invariant set of attraction and the parameter t is an
upper bound to the square of the maximal semiaxis of
the same ellipsoid.

As discussed in Section 4, to achieve suitable
and acceptable results of the PENBMI software and
to obtain less conservative solutions, di�erent versions
of Constraints (8) and (9) of Theorem 1 were em-
ployed. However, according to Table 1, in all cases,
the obtained optimal solutions were identical and only
the scalar variables �1i and �2i varied. This behavior
was detected in other examples, as well. Moreover, in
this particular example and at an operating point, the
optimal solutions of Theorem 1 outperformed those of
Theorem 3 in [20].

Example 2. The second example is an academic one
borrowed from [20]. To obtain acceptable solutions
from PENBMI software, here, we needed to choose
a shorter discretization time than Ts = 1 in [20].
In this comparative study, Ts = 0:05 was chosen to
obtain acceptable results in a wide range of operating
points. Obviously, at some operating points, we
could choose larger values of Ts however, to unify the
numerical results, we selected a common discretization
time as Ts = 0:05. The discrete-time switched a�ne
system consisting of 2 unstable systems de�ned by the
following state space matrices is considered 2 as follows:

Ac1 =

24 0 1 0
0 0 1
�1 �1 �1

35 ;
Ac2 =

24 0 1 0
0 0 1
0 �1 �1

35 ;
bc1 = [1 0 1]T ; bc2 = [0 1 0]T : (57)

The discrete-time system matrices Ai and bi, i 2 f1; 2g
are calculated through Eq. (55). Table 2 gives the
parameters related to the size of ellipsoids obtained
by solving the conditions of Theorem 1 and Theorem
3 in [20]. In this table, the symbol \{" denotes
that no convergence is achieved in the respective case.
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Table 2. Ellipsoid size comparisons for numerical Example 2.

Operating

point

Comparison

quantities

Theorem 1

ellipsoid size

Theorem 3 of [20]

�1 = �21P
i2K �2i

�2 = �22P
i2K �2i

�3 = �23P
i2K �2i

ellipsoid size

Theorem 1P
i2K �1i = 1P
i2K �2i = 1

Theorem 1P
i2K �1i = 1P
i2K �2i > 0

Theorem 1P
i2K �1i > 0P
i2K �2i = 1

p = 0:1 t { { { { {
1p

det(P )
{ {

p = 0:2 t 3:9544 4:7667 �11 = 0:2085 �11 = 0:2085 �11 = 0:0410
1p

det(P )
2:5631 3:5505 �12 = 0:7915 �12 = 0:7915 �12 = 0:1556

�21 = 0:2085 �21 = 0:0325 �21 = 0:2085

�22 = 0:7915 �22 = 0:1234 �22 = 0:7915

p = 0:3 t 2:0630 2:1559 �11 = 0:3035 �11 = 0:3035 {
1p

det(P )
1:0428 1:1754 �12 = 0:6965 �12 = 0:6965

�21 = 0:3035 �21 = 0:0134

�22 = 0:6965 �22 = 0:0309

p = 0:4 t 1:3561 1:2391 �11 = 0:3984 { {
1p

det(P )
0:5948 0:5484 �12 = 0:6965

�21 = 0:3984

�22 = 0:6016

p = 0:5 t 1:0054 0:8429 �11 = 0:4950 { {
1p

det(P )
0:4008 0:3182 �12 = 0:5050

�21 = 0:4950

�22 = 0:5050

p = 0:6 t 0:8038 0:6440 �11 = 0:5936 { �11 = 0:1030
1p

det(P )
0:2985 0:2171 �12 = 0:4064 �12 = 0:0706

�21 = 0:5936 �21 = 0:5936

�22 = 0:4064 �22 = 0:4064

p = 0:7 t 0:6776 0:5448 �11 = 0:6937 �11 = 0:6937 �11 = 0:0651
1p

det(P )
0:2384 0:1721 �12 = 0:3063 �12 = 0:3063 �12 = 0:0288

�21 = 0:6937 �21 = 0:1076 �21 = 0:6937

�22 = 0:3063 �22 = 0:0475 �22 = 0:3063

p = 0:8 t 0:5955 0:4665 �11 = 0:7952 { {
1p

det(P )
0:2020 0:1369 �12 = 0:2048

�21 = 0:7952

�22 = 0:2048

p = 0:9 t 0:5431 0:4280 �11 = 0:8974 { {
1p

det(P )
0:1831 0:1247 �12 = 0:1026

�21 = 0:8974

�22 = 0:1026
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Figure 5. State x trajectory and invariant set of
attraction.

Again, di�erent versions of Constraints (8) and (9) of
Theorem 1 are employed. Nevertheless, according to
Table 2, in all cases where convergence is achieved,
the obtained optimal solutions are identical and only
the scalar variables �1i and �2i vary. This behavior is
observed in the following examples, as well. Therefore,
in the next examples, we only consider the numerically
well-behaved versions of original Constraints (8) and
(9) in Theorem 1 as

P
i2K �2i = 1 and

P
i2K �1i =

1. According to Table 2, at the operating points
corresponding to � = 0:2 and � = 0:3, Theorem 1 yields
less conservative results, while in other cases, Theorem
3 of [20] yields better responses.

By starting from x0 = [10 5 5]T and setting
p = 0:5, Figure 5 shows the state trajectory x(k) and
invariant set of attraction. The time evolution of the
trajectories x(k) and switching function are shown in
Figure 6.

In the sequel, we compare our methodology with
Theorem 3 in [20] in the case of the basic and classical
DC-DC boost, buck and buck-boost converters. The
parameters used for the numerical experiments are
given in Table 3 [57]. To avoid ill-conditioned matrix
inequalities and make the problem more amenable for
numerical purposes, per unit parameters are used in the
numerical experiments. The base parameters are se-
lected as vbase = 50 V, ibase = 2:5 A, and Tbase = 10 �s.

Table 3. The speci�cations of the DC-DC boost, buck
and buck-boost converters [57].

Input voltage, vs 50 V 1 p.u.
Converter inductor, L 2 mH 10 p.u.
Output capacitor, C 100 �F 200 p.u.
Load resistance, R 50 
 2.5 p.u.

Sampling period, Ts 10 �s 1 p.u.
Inductor series resistance, rL 0.5 
 0.025 p.u.

Capacitor series resistance, rC 0.1 
 0.005 p.u.

Figure 6. Time pro�les of the trajectories x and
switching function �.

Figure 7. DC-DC boost converter.

Example 3. Figure 7 shows the schematic diagram
of a DC-DC boost converter. The continuous states
of the system are de�ned as x(t) = [iL(t); vo(t)]T
which are the inductor current and converter output
voltage, respectively. The state-space equations of this
converter are as follows [58,59]:

_x(t) = Ac1x(t) + bc1; (58)

_x(t) = Ac2x(t) + bc2; (59)

where:

Ac1 =
� � rLL 0

0 � 1
C

1
(R+rC)C

�
; bc1 =

� vs
L
0

�
;

Ac2 =
� � rLL � 1

L
R

R+rC

� 1
C � rCrL

L

� � R
R+rC

� rC
L + 1

RC

� � ;
bc2 =

� vs
L

R
R+rC

rC
L vs

�
: (60)

Discrete-time state equations can be obtained via
Eq. (55). Table 4 gives the size of the invariant
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Table 4. Ellipsoid size comparisons for the DC-DC boost converter.

Operating

point

Comparison

quantities

Theorem 1

ellipsoid size

Theorem 3 of [20]

�1 = �21P
i2K �2i

�2 = �22P
i2K �2i

ellipsoid size

Theorem 1P
i2K �1i = 1P
i2K �2i = 1

p = 0:1 t 0.2522 0.2281 �11 = 0:0997
1p

det(P )
0.0562 0.0509 �12 = 0:9003

�21 = 0:0997

�22 = 0:9003

p = 0:2 t 0:5965 0:5249 �11 = 0:1997
1p

det(P )
0:1331 0:1172 �12 = 0:8003

�21 = 0:1997

�22 = 0:8003

p = 0:3 t 1:0526 0:9163 �11 = 0:2997
1p

det(P )
1:0428 0:2351 �12 = 0:7003

�21 = 0:2997

�22 = 0:7003

p = 0:4 t 1:6588 1:4468 �11 = 0:3998
1p

det(P )
0:3709 0:3231 �12 = 0:6002

�21 = 0:3998

�22 = 0:6002

p = 0:5 t 2:4775 2:1918 �11 = 0:4999
1p

det(P )
0:5550 0:4895 �12 = 0:5001

�21 = 0:4999

�22 = 0:5001

p = 0:6 t 3:6101 3:2869 �11 = 0:6000
1p

det(P )
0:8110 0:7343 �12 = 0:4000

�21 = 0:6000

�22 = 0:4000

p = 0:7 t 5:2074 4:9806 �11 = 0:7000
1p

det(P )
1:1759 1:1142 �12 = 0:3000

�21 = 0:7000

�22 = 0:3000

p = 0:8 t 7:3251 7:6248 �11 = 0:8000
1p

det(P )
1:6724 1:7116 �12 = 0:2000

�21 = 0:8000

�22 = 0:2000

p = 0:9 t 7:9900 9:1003 �11 = 0:8999
1p

det(P )
1:9520 2:3733 �12 = 0:1001

�21 = 0:8999

�22 = 0:1001
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Figure 8. Invariant set of attraction and state
trajectories of the DC-DC boost converter corresponding
to the operating point p = 0:5.

Figure 9. Time evolution of the state variables and
switching function for the DC-DC boost converter.

set of attraction by solving conditions of Theorem 1
and Theorem 3 in [20]. According to this table, at
the operating points corresponding to p = 0:1 � 0:7,
Theorem 3 of [20] results in less conservative results,
while at the operating points corresponding to p =
0:8� 0:9, Theorem 1 gives smaller sizes.

The state trajectories x(k) = [iL(k); vo(k)]T start-
ing from various initial points and invariant set of
attraction corresponding to the operating point p = 0:5
are shown in Figure 8. Figure 9 illustrates the time
evolutions of the state variables and switching sequence
corresponding to the initial condition iL(0) = vo(0) =
5 p:u:

Example 4. Figure 10 shows the circuit diagram of
a DC-DC buck converter. Let the continuous states
of the system be de�ned as x(t) = [iL(t); vo(t)]T which
are the inductor current and converter output voltage
respectively. The state-space equations of the converter
are given as Eq. (58) where [60,61]:

Figure 10. DC-DC buck converter.

Figure 11. Invariant set of attraction and state
trajectories of the DC-DC buck converter corresponding
to the operating point p = 0:5.

Ac1 = Ac2

=
� � rLL � 1

L
1
C

R
R+rC

�
1�CrC rLL

� �1
C

1
R+rC

�
1+CrC RL

�� ;
bc1 =

� vs
L

vs R
R+rC

rC
L

�
;

bc2 =
�
0
0

�
: (61)

Table 5 gives the size of the ellipsoids by solving the
BMI conditions of Theorem 1 and Theorem 3 in [20].
As it can be seen from this table, in the case of DC-DC
buck converter, both theorems yield identical results.
The state trajectory x(k) starting from various initial
states and the invariant set of attraction corresponding
to the operating point p = 0:5 are shown in Figure 11.
Figure 12, illustrates the time evolutions of the state
variables and switching function corresponding to the
initial condition iL(0) = vo(0) = 5 p:u:

Example 5. Figure 13 shows the schematic diagram
of a DC-DC buck-boost converter. Considering x(t) =
[iL(t); vo(t)]T , the state-space equations are given as
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Table 5. Ellipsoid size comparisons for the DC-DC buck converter.

Operating

point

Comparison

quantities

Theorem 1

ellipsoid size

Theorem 3 of [20]

�1 = �21P
i2K �2i

�2 = �22P
i2K �2i

ellipsoid size

Theorem 1P
i2K �1i = 1P
i2K �2i = 1

p = 0:1 t 0.1803 0.1803 �11 = 0:1000
1p

det(P )
0.0402 0.0402 �12 = 0:9000

�21 = 0:1000

�22 = 0:9000

p = 0:2 t 0:3205 0:3205 �11 = 0:2000
1p

det(P )
0:0715 0:0715 �12 = 0:8000

�21 = 0:2000

�22 = 0:8000

p = 0:3 t 0:4206 0:4206 �11 = 0:3000
1p

det(P )
0:0938 0:0938 �12 = 0:7000

�21 = 0:3000

�22 = 0:7000

p = 0:4 t 0:4807 0:4807 �11 = 0:4000
1p

det(P )
0:1072 0:1072 �12 = 0:6000

�21 = 0:4000

�22 = 0:6000

p = 0:5 t 0:5007 0:5007 �11 = 0:5000
1p

det(P )
0:1117 0:1117 �12 = 0:5000

�21 = 0:5000

�22 = 0:5000

p = 0:6 t 0:4807 0:4807 �11 = 0:6000
1p

det(P )
0:1072 0:1072 �12 = 0:4000

�21 = 0:6000

�22 = 0:4000

p = 0:7 t 0:4206 0:4206 �11 = 0:7000
1p

det(P )
0:0938 0:0938 �12 = 0:3000

�21 = 0:7000

�22 = 0:3000

p = 0:8 t 0:3205 0:3205 �11 = 0:8000
1p

det(P )
0:0715 0:0715 �12 = 0:2000

�21 = 0:8000

�22 = 0:2000

p = 0:9 t 0:1803 0:1803 �11 = 0:9000
1p

det(P )
0:0402 0:0402 �12 = 0:1000

�21 = 0:9000

�22 = 0:1000
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Figure 12. Time evolution of the state variables and
switching function for the DC-DC buck converter.

Figure 13. DC-DC buck-boost converter.

Eq. (58) where [62]:

Ac1 =
� � rLL 0

0 � 1
C

1
(R+rC)

�
; bc1 =

� vs
L
0

�
;

Ac2 =
� � rLL � 1

L
R

R+rC

� 1
C � rCrL

L

� � R
R+rC

� rC
L + 1

RC

� � ;
bc2 =

�
0
0

�
: (62)

Based on Table 6, except for the operating point
p = 0:8, the conditions in Theorem 3 of [20] yield
less conservative results. The state trajectories as
well as the invariant set of attraction corresponding
to the operating point p = 0:5 are shown in Figure 14.
Figure 15 illustrates the time evolutions of the state
variables and switching sequence corresponding to the
initial condition iL(0) = vo(0) = 5 p:u:

In sum, according to foregoing results, one may
conclude that the proposed conditions in Theorem 1
are more suitable in terms of implementation than
Theorem 3 of [20]. Moreover, statistically and not
in all cases, the conditions of Theorem 3 in [20]
produce less conservative results since more unknown
variables and higher degrees of freedom are considered
in constructing the ultimate invariant set of attraction.

6. Conclusion

In this paper, globally practical stabilization of the
discrete-time switched a�ne systems was proposed.

Figure 14. Invariant set of attraction and state
trajectories of the DC-DC buck-boost converter.

Figure 15. Time evolution of the state variables and
switching function for the DC-DC buck-boost converter.

More speci�cally, in contrast to the existing two-stage
stabilization methods, the proposed stability condi-
tions were derived in a single stage based on a common
quadratic Lyapunov function such that there was no
need to compute a Schur stable matrix as a convex
combination of operating modes in a preprocessing
stage. Moreover, the equilibrium point around which
the ultimate convergence set was constructed was not
required to be a part of a speci�c set. The proposed
stability conditions were formulated as a set of Bilinear
Matrix Inequalities (BMIs) by considering some design
criteria such as minimum size of the invariant set of
attraction and smaller number of unknown variables.
Finally, an academic example and various DC-DC
converters were used to provide evidence for the merit
of the proposed stabilization method.

Several research directions are suggested for fur-
ther research. The �rst one is related to the use of
more e�cient and less conservative Lyapunov functions
such as the structured Lyapunov functions proposed
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Table 6. Ellipsoid size comparisons for the DC-DC buck-boost converter.

Operating

point

Comparison

quantities

Theorem 1

ellipsoid size

Theorem 3 of [20]

�1 = �21P
i2K �2i

�2 = �22P
i2K �2i

ellipsoid size

Theorem 1P
i2K �1i = 1P
i2K �2i = 1

p = 0:1 t 0.2558 0.2309 �11 = 0:0997
1p

det(P )
0.0569 0.0516 �12 = 0:9003

�21 = 0:0997

�22 = 0:9003

p = 0:2 t 0:6061 0:5317 �11 = 0:1997
1p

det(P )
0:1349 0:1188 �12 = 0:8003

�21 = 0:1997

�22 = 0:8003

p = 0:3 t 1:0714 0:9290 �11 = 0:2997
1p

det(P )
0:2386 0:2076 �12 = 0:7003

�21 = 0:2997

�22 = 0:7003

p = 0:4 t 1:6919 1:4685 �11 = 0:3998
1p

det(P )
0:3771 0:3283 �12 = 0:6002

�21 = 0:3998

�22 = 0:6002

p = 0:5 t 2:5338 2:2281 �11 = 0:4999
1p

det(P )
0:5654 0:4985 �12 = 0:5001

�21 = 0:4999

�22 = 0:5001

p = 0:6 t 3:7061 3:3483 �11 = 0:6000
1p

det(P )
0:8288 0:7499 �12 = 0:4000

�21 = 0:6000

�22 = 0:4000

p = 0:7 t 5:3754 5:0887 �11 = 0:7001
1p

det(P )
1:2073 1:1419 �12 = 0:2999

�21 = 0:7001

�22 = 0:2999

p = 0:8 t 7:6283 7:8255 �11 = 0:8001
1p

det(P )
1:7300 1:7659 �12 = 0:1999

�21 = 0:8001

�22 = 0:1999

p = 0:9 t { { {
1p

det(P )
{ {
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in [49]. The second suggestion is to focus on the
local or global optimization algorithms by developing
more e�cient numerical algorithms in order to achieve
better performance indices such as convergence, higher
convergence speed, and better solutions in the sense of
the closeness to the real global optimum point. Finally,
the extension of the proposed stabilization technique to
uncertain switched a�ne systems is another important
research direction.
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