Modeling for radiated Marangoni convection flow of magneto-nanoliquid subject to Activation energy and chemical reaction

Document Type: Article

Authors

1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2 - Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan - Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University P. O. Box 80203, Jeddah 21589, Saudi Arabia

3 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4 Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad

Abstract

Simultaneous impacts of non-linear radiation and magnetohydrodynamics in Marangoni convection nanoliquid are addressed Novel aspects of activation energy and space dependent heat source are addressed. Nanoliquid attributes Brownain movement and thermophoresis diffusion. NDSolve base shooting technique is employed for the numerical simulation. Aspects of various embedded variables are focused on velocity, heat and mass transport distributions via graphical interpretations. Moreover temperature gradient at the surface is estimated and analyzed. Our study identified that exponential based space heat source (ESHS) parameter significantly enhanced the thermal field. Activation energy and temperature difference parameters decrease the nanoparticles concentration. Moreover temperature gradient enhances for higher Marangoni ratio parameter, Hartmann number, dimensionless activation energy and thermophoresis parameter.

Keywords