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Abstract. Simultaneous impacts of non-linear radiation and magnetohydrodynamics in
Marangoni convection nanoliquid, as well as novel aspects of activation energy and space
dependent heat source are addressed. Nanoliquid attributes include Brownian movement
and thermophoresis di�usion. An NDSolve base shooting technique is employed for the
numerical simulation. Aspects of various embedded variables are focused on velocity, heat
and mass transport distributions via graphical interpretations, and temperature gradient
at the surface is estimated and analyzed. This study identi�ed that the Exponential based
Space Heat Source (ESHS) parameter signi�cantly enhanced the thermal �eld. Activation
energy and temperature di�erence parameters decrease the nanoparticles concentration.
Also, temperature gradient enhances for higher Marangoni ratio parameter, Hartmann
number, dimensionless activation energy and thermophoresis parameter.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Nanoliquid at present is a busy topic for researchers.
Choi [1] proposed a novel idea of the suspension
of nanoparticles (dimensions less than 100 nm) in
traditional liquids. He discovered that such a kind
of suspension of solid particles in conventional liquids
leads to thermal conductivity enhancement. There
are several kinds of base liquids namely bio-liquids,
lubricants, oils, water, polymer solutions, ethylene
glycol etc. Such liquids have useful applications in
transformer cooling, electronic cooling and heat ex-
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changesr [1{3]. Thus, for intensi�cation of thermal
potential, �ne metallic particles (TiO2, Cu, Ag, Al2O3,
Fe and their oxides) are dispersed homogeneously in
the operating liquids. Sizeable information about
nanoliquids with diverse features is available. Some
representative attempts regarding nano-materials can
be observed via [4{18]. On the other hand, biodegrad-
ability, long blood retention time and the low toxicity
of magnetic nanoparticles has become a principal ma-
terial in biomedical usage. Distinct characteristics like
coercivity, high magnetic susceptibility, a large surface
to volume ratio, superparamagnetism and low Curie
temperature have raised the attention of scientists
in magneto-nanoliquids. Nanoparticles composed of
magnetic iron oxide are widespread in nature, chem-
ically and physically stable, inexpensive to produce,
biocompatible and environmentally safe [19]. Mag-
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netite, hematite and maghemite are typical examples
of these materials. Numerous engineering applications
regarding magnetic materials include elimination of tu-
mors, asthma treatment, magnetic hyperthermia, drug
release, thermoblation, Magnetic Resonance Imaging
(MRI), targeted drug delivery, synergistic e�ects and
biosensing (biomolecules and cells). Generally, magne-
tized nanoparticles exhibit random motion inside the
base liquid which would be converted into uniform
motion by employing an external magnetic �eld [20].
Coated magnetized nanoparticles dispersed in anti-
cancer drugs can be injected into a patient's body and
movement of the drug to the target region is restrained
via a magnetic �eld [21]. Some analysis in this regard
may be noticed in the literature [22{25].

The layers which may arise along the liquid-
liquid or liquid-gas interactions are referred to as
Marangoni layers. Marangoni ow can be both tem-
perature and concentration gradients which are created
due to the surface tension gradient. Analysis of
Marangoni convection remains an area of high curiosity
for engineers and scientists because of its appearance
in several practical applications, namely; aerospace,
crystal growth, materials science, welding, spreading of
thin �lms, semiconductor processing, nuclear reactors
etc. Napolitano [26,27] provided the basic work in
this direction and, subsequently, numerous researchers
comprehensively scrutinized Marangoni ow with var-
ious aspects [28{32]. Xu and Chen [33] explored the
heat transport features of Marangoni ow in a copper-
water nanoliquid. Sheikholeslami and Chamkha [34]
examined aspects of magnetohydrodynamics (MHD)
on nanoliquid by considering the Marangoni convec-
tion. Thermal Marangoni convective ow of nanoliquid
using a rotating disk with irregular heat and solar
radiation has been studied by Mahanthesh et al. [35].

The energy that escalates from a heated region to
its absorption region in every direction, such as elec-
tromagnetic waves is referred to as thermal radiation.
It is created by the thermal tumult of composite atoms
of the body. Light-bulbs, �re, heat from the microwave
and sun radiation are typical examples of thermal
radiation. The infrared regime of the electromagnetic
spectrum incorporates radiation for most objects on
this earth. For this reason, the inspection of radiation
is important in the conversation of thermal frameworks.
It plays a remarkable role at di�erent high temperature
procedures. This concept is also widespread in gas
turbines, furnaces, engine cooling, aircraft and boilers
etc. Further technological uses of it can be found
in solar technology, nuclear power plants, technology
related to power, combustion chambers and chemical
processes. It has been remarked that aspects of ther-
mal radiation become signi�cant when the di�erence
between ambient and surface temperature is large [36{
40].

The objective here is to disclose the features of
solutal-thermo Marangoni convection in the ow of
nanomaterials. Formulation is based upon conserva-
tion laws. Attributes of thermal radiation, Brow-
nian motion and thermophoretic di�usion are de-
scribed. In addition, the impacts of activation energy
are examined. Transformations are used to convert
ow expressions into ordinary ones. An NDSolve
based shooting technique is implemented for the so-
lutions. Plots are shown to describe the behaviors
of physical variables, and the Nusselt number is es-
timated.

2. Problem formulation

Radiative Marangoni convective ow of magneto-
nanoliquid is addressed. A magnetic �eld of strength,
B0, is implemented in a y-direction (see Figure 1).
Varying temperature with power law is assumed at
the surface. Heat and mass transport is subject
to an irregular heat source, thermal radiation and
activation energy. Aspects of thermophoretic di�usion
and Brownian motion are considered. No relative
movement exists between the base liquid and nanopar-
ticles. Moreover, the nanoparticles ux condition is
intended. The modeled equations are [28{31,41{45]:
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Figure 1. Flow physical schematic diagram.
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u(x;1)!0; T (x;1)!T1; C(x;1)!C1: (6)

Here, velocity components parallel to (x; y) are signi�ed
by (u; v), � the kinematic viscosity, n the exponen-
tial index, �f the nanomaterials thermal di�usivity,
�f the liquid density, Q0 heat generation/absorption
variable, �1 the electrical conductivity, � = (�c)p

(�c)f the
heat capacity ratio, Ea the non-dimensional activation
energy, DB the di�usion coe�cient, DT the coe�cient
of thermophoretic di�usion, (T;C) and (T1; C1) the
respective ambient and nanoparticles temperature and
concentration. The expression for surface tension (�)
is:
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where T and C designate the coe�cients of tem-
perature and concentration surface tension and �0 is
a positive constant. Further, in Eq. (4) � = 8:61 �
10 (eV/K) is the Boltzmann constant, m(�1 < m > 1)
the �tted rate constant, and k2

r the rate of reaction.
Radiative heat ux qr is:
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where m�� the coe�cient of mean absorption and ���
indicates the Stefan-Boltzman. On using Eq. (8),
Eq. (3) yields:
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Setting [47]:
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expression (1) is veri�ed trivially while other equations
and boundary conditions are:
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where Ha denotes Hartmann number, Nb the Brownian
motion parameter, Pr the Prandtl number, n the
exponential index, Q the ESHS variable, Nt the ther-
mophoresis parameter, Sc the Schmidt number, �1 the
reaction rate, L the reference length, Rd the radiation
variable, � the temperature di�erence parameter, r
the Marangoni ratio parameter, E the dimensionless
activation energy, Ma the solutal, and MaT the thermal
Marangoni numbers. These variables are quanti�ed by:
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2.1. Physical quantity
Local gradient of temperature (Nux) is de�ned as:

Nux =
qwx

kf (T � T1)
; (16)

where:
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In dimensionless form, one has:

Nux = � x
L
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2.2. Computational method
The solutions of Eqs. (12){(15) are computed numer-
ically by adopting the NDSolve based shooting tech-
nique. A well-known computer software, Mathematica,
is utilized for the simulation of non-linear problems.

3. Discussion

Using the numerical technique highlighted in the afor-
mentioned section, interpretations have been carried
out for several values of embedded variables, like
Hartmann number Ha, Brownian motion parameter
Nb, Prandtl number Pr, ESHS variable Q, Schmidt
number Sc, thermophoresis variable Nt, reaction rate
�1, radiation parameter Rd, temperature di�erence
parameter �, Marangoni ratio parameter r, dimension-
less activation energy E on non-dimensional velocity
f 0(�), temperature �(�), and concentration �(�). The
involved variables have �xed values:

n = 0:2; Pr = 0:7 = Sc; � = 0:3 = Nb; Nt = 0:1;

�1 = Rd = 0:2 = Q = Ha; m = 1:2 = r; E = 3:0:

In Figure 2 the impact of Ha on f 0(�) is designed.
Here, it was noticed that velocity decays for higher
Ha. For Lorentz force increments, a back ow appears

Figure 2. Behavior of f 0(�) via Ha.

Figure 3. Feature of f 0(�) via r.

Figure 4. Behavior of �(�) via Ha.

Figure 5. Behavior of �(�) via Q.

and velocity f 0(�) reduces. The thickness of the
momentum layer is also reduced. The e�ect of r on
velocity f 0(�) is reported in Figure 3. Clearly, higher
estimations of r correspond to more velocity. The
inuence of Ha on temperature �(�) is elucidated in
Figure 4. It is found that larger Ha augment the
nanoliquid �(�). Physical strength in the magnetic
�eld corresponds to an enhanced Lorentz force. This
force has a property to endure the liquid movement
and thus rise �(�). Moreover, the situation of hy-
drodynamics is recovered for Ha = 0. Figure 5 is
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Figure 6. Behavior of �(�) via Nt.

Figure 7. Behavior of �(�) via Nb.

interpreted to see changes in �(�) via Q. It is concluded
that higher estimations of Q signi�cantly augment
the temperature. In fact more heat is produced
because of the heat generation procedure within the
considered liquid. Interestingly, the thermal �eld is
enhanced signi�cantly for very small estimations, i.e
(0.0 to 0.6) in the process of ESHS parameters. The
importance of thermophoresis parameter Nt on �(�)
is captured in Figure 6. Here, the thermal �eld is
improved for larger Nt. Physically, Nt assists thermal
di�usion. It means that large numbers of nanoparticles
are shifted towards ambient liquid and thus uplift
the thermal �eld and its layer thickness. Figure 7
shows the behavior of Nb on �(�). Here, temperature
is the decaying function of Nb. Figure 8 displays
the consequences of Pr on �(�). As expected, an
increment in Pr declines thermal di�usion and increases
the thermal capacity of liquid, as Pr has an inverse
link with thermal di�usion. Therefore, the strength in
Pr declined thermal di�usion, consequently, dropping
the temperature. Figure 9 discloses the feature of
r on temperature �(�). Here, �(�) is reduced for
higher estimations of r. An enhancement in Rd leads
to augment temperature distribution. This result is
depicted in Figure 10. Kinetic energy progressively
enhances due to an increment in Rd, which makes

Figure 8. Behavior of �(�) via Pr.

Figure 9. Behavior of �(�) via r.

Figure 10. Behavior of �(�) via Rd.

the thermal layer thicker. Salient characteristics of Nt
on concentration �eld �(�) are reported in Figure 11.
The phenomenon of thermophoresis corresponds to
dissemination of the nanoparticles towards ambient
liquid from the hot region (as from heated surfaces
more resistance is o�ered to the nanoparticles). Conse-
quently, the thermophoretic force allows nanoparticles
to transport heat from the surface to the moving
liquids and so �(�) enhances. The feature of Nb on
concentration distribution is declared in Figure 12.
Here, the �(�) decaying function of Nb is enhanced.
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Figure 11. Behavior of �(�) via Nt.

Figure 12. Behavior of �(�) via Nb.

Figure 13. Behavior of �(�) via E.

Physically, Brownian motion occurs due to the corre-
lation of nanoparticles with base liquid in a nanoliquid
system. Brownian motion is inuenced for higher
values of Nb, which ultimately drops the conduction
distribution. Nanoparticle concentration designates a
decaying feature for higher activation energy variable
(see Figure 13). Figure 14 shows the features of Sc
on concentration �(�). It is found that �(�) is an
increasing function of Sc. The impact of �1 on �(�)

Figure 14. Behavior of �(�) via Sc.

Figure 15. Behavior of �(�) via �1.

is interpreted in Figure 15. Clearly, strength in �1
declined �(�). Aspects of diverse embedding variables
on local temperature gradient (Nux) are displayed in
Table 1. It is noticed that Nusselt number is enhanced
via Ha, r, Nt, and E.

4. Concluding remarks

Magnetohydrodynamic Marangoni convective ow in
the presence of activation energy, ESHS and thermal
radiation is inspected. Further zero mass ux condition
is encountered. Outcomes of the present analysis are
summarized as follows:

� Velocities for Marangoni ratio and Hartmann num-
ber are opposite;

� Strength in Marangoni ratio on temperature and
velocity has a reverse trend;

� Temperature is increased with higher Rd and Q;
� Features of Nb and Nt on the thermal �eld are quite

opposite;
� Temperature gradient is enhanced via the

Marangoni ratio and activation energy parameters,
but a reverse trend is observed for higher heat
source parameters;
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Table 1. Numerical estimations of temperature gradient (Nux) for E, Q, Ha, Nb, Nt and Rd when n = 0:2, Pr = 0:7 = Sc,
� = 0:3 = 0:1, �1 = 0:2, and m = 1:2.

Parameters (�xed values) Parameters ��0(0)

n = 0:2, Pr = 0:7 = Sc, � = 0:3 = Nb, m = 0:2,
Nt = 0:1, �1 = Rd = Ha = Q = 0:2, E = 3:0

r
0.0 1.00756
1.0 1.33393
2.0 1.56104

n = 0:2, Pr = 0:7 = Sc, � = 0:3 = Nb, m = 0:2,
Nt = 0:1, �1 = Rd = Ha = Q = 0:2, E = 3:0, r = 1

Ha
0.2 0.81202
0.5 1.27351
1.0 1.17967

n = 0:2, Pr = 0:7 = Sc, � = 0:3, m = 0:2, Nt = 0:1,
�1 = Rd = Ha = Q = 0:2, E = 3:0, r = 1

Nb
0.1 1.27379
0.2 1.33393
0.3 1.45732

n = 0:2, Pr = 0:7 = Sc, � = 0:3 = Nb, m = 0:2,
�1 = Rd = Ha = Q = 0:2, E = 3:0, r = 1

Nt
0.1 1.33393
0.3 0.66894
0.5 0.64616

n = 0:2, Pr = 0:7 = Sc, � = 0:3 = Nb, m = 0:2,
Nt = 0:1, �1 = Ha = Q = 0:2, E = 3:0, r = 1

Rd
0.0 1.57952
0.5 1.09983
0.9 0.90810

n = 0:2, Pr = 0:7 = Sc, � = 0:3 = Nb, m = 0:2,
Nt = 0:1, �1 = Rd = Ha = 0:2, E = 3:0, r = 1

Q
0.0 1.49673
0.4 1.17325
0.8 0.85797

n = 0:2, Pr = 0:7 = Sc, � = 0:3 = Nb, m = 0:2,
Nt = 0:1, �1 = Rd = Ha = Q = 0:2, r = 1

E
0.0 1.33335
1.0 1.33370
3.0 1.33393

� Concentration enhances for larger Sc and �1.
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