Prediction of the size of silver nanoparticles prepared via green synthesis: A gene expression programming approach

Document Type : Article

Authors

Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, P.O. Box 76135-133, Kerman, Iran

Abstract

This study presents a new prediction model for estimating the size of AgNPs prepared by green synthesis via gene expression programming (GEP). Firstly, 30 different experiments were used to construct the GEP models. Plant extract, reaction temperature, concentration of AgNO3 and stirring time parameters were considered as input and the size of AgNPs parameter selected as output variables. By consideration of correlation coefficient (R2), mean absolute error (MAE), root relative square error (RRSE) as criteria, the performance of proposed models by GEP were compared each other. Finally, the best model (i.e., GEP-1) with R2=0.9961, MAE=0.2545 and RRSE=0.0668 proposed as a new model with simplified mathematical expressions to estimate the size of AgNPs. The results of sensitivity analysis showed that the amount of plant extract, the concentration of AgNO3, stirring time and reaction temperature are the most effective parameters on the size of AgNPs, respectively. Proposed model via gene expression is satisfactory and can be extended for a wide range of applications. Moreover, the proposed model provides the possibility of preparation of the minimum materials consumption for preparation of the lowest size of AgNPs by consideration of practical or economical constraints.

Keywords


References
1. Santra, T.S., Tseng, F.-G.K., and Barik, T.K.
Biosynthesis of silver and gold nanoparticles for
potential biomedical applications-A brief review", J
Nanopharm Drug Deliv, 2(4), pp. 249{265 (2014).
2. Saber, M.M., Mirtajani, S.B., and Karimzadeh, K.
Green synthesis of silver nanoparticles using Trapa
natans extract and their anticancer activity against
A431 human skin cancer cells", J Drug Deliv Sci Tech,
47, pp. 375{379 (2018).
3. Pirtarighat, S., Ghannadnia, M., and Baghshahi,
S. Antimicrobial e ects of green synthesized silver
nanoparticles using Melissa ocinal is grown under in
vitro condition", Nanomed J, 4(3), pp. 184{190 (2017).
4. Govindaraju, K., Basha, S.K., Kumar, V.G., et al.
Silver, gold and bimetallic nanoparticles production
using single-cell protein (Spirulina platensis) Geitler",
J. Mater. Sci, 43(15), pp. 5115{5122 (2008).
5. Kumar, A., Mandal, S., Selvakannan, P., et al.
Investigation into the interaction between surfacebound
alkylamines and gold nanoparticles", Langmuir,
19(15), pp. 6277{6282 (2003).
3410 R. Sattari and G.R. Khayati/Scientia Iranica, Transactions F: Nanotechnology 27 (2020) 3399{3411
6. Mukherjee, S., Nethi, S.K., and Patra, C.R. Green
synthesized gold nanoparticles for future biomedical
applications", Particulate Technology for Delivery of
Therapeutics, Springer, pp. 359{393 (2017).
7. Shabanzadeh, P., Yusof, R., and Shameli, K. Arti-
cial neural network for modeling the size of silver
nanoparticles' prepared in montmorillonite/starch bionanocomposites",
J Ind Eng Chem, 24, pp. 42{50
(2015).
8. Behnia, D., Ahangari, K., Goshtasbi, K., et al. Settlement
modeling in central core rock ll dams by new
approaches", Int. J. Min. Sci. Technol, 26(4), pp. 703{
710 (2016).
9. Jafari, M.M. and Khayati, G.R. Prediction of hydroxyapatite
crystallite size prepared by sol-gel route:
gene expression programming approach", J Sol-Gel Sci
Techn, 86(1), pp. 112{125 (2018).
10. Koza, J.R., Genetic Programming II, Automatic Discovery
of Reusable Subprograms: MIT Press, Cambridge,
MA (1992).
11. Kayadelen, C. Soil liquefaction modeling by genetic
expression programming and neuro-fuzzy", Expert Syst
Appl, 38(4), pp. 4080{4087 (2011).
12. Khademalrasoul, A. and Adib, A. Estimation of
mixed-mode fracture parameters by gene expression",
Sci Iran, 27(1), pp. 229{238 (2018).
13. Iqbal, M.F., Liu, Q.-F., Azim, I., et al. Prediction of
mechanical properties of green concrete incorporating
waste foundry sand based on gene expression programming",
J. hazard. Mater, 384, pp. 1{17 (2020).
14. Ferreira, C., Gene Expression Programming: Mathematical
Modeling by an Arti cial Intelligence, Springer
(2006).
15. Teodorescu, L. and Sherwood, D. High energy physics
event selection with gene expression programming",
Comput Phys Commun, 178(6), pp. 409{419 (2008).
16. Khandelwal, M., Faradonbeh, R.S., Monjezi, M., et
al. Function development for appraising brittleness of
intact rocks using genetic programming and non-linear
multiple regression models", Eng Comput-Germany,
33(1), pp. 13{21 (2017).
17. Hoseinian, F.S., Faradonbeh, R.S., Abdollahzadeh, A.,
et al. Semi-autogenous mill power model development
using gene expression programming", Powder Technol,
308, pp. 61{69 (2017).
18. Ferreira, C. Gene expression programming: A new
adaptive algorithm for solving problems", Complex
Syst, 13(2), pp. 87{129 (2001).
19. Sardemir, M. E ect of specimen size and shape on
compressive strength of concrete containing
y ash:
Application of genetic programming for design", Mater
Design (1980-2015), 56, pp. 297{304 (2014).
20. Yekani Motlagh, S., Shari , A., Ahmadi, M., et al.
Presentation of new thermal conductivity expression
for Al2O3-water and CuO-water nano
uids using
gene expression programming (GEP)", J Therm Anal
Calorim, 135(1), pp. 195{206 (2019).
21. Abdellahi, M., Bhmanpour, M., and Bahmanpour,
M. Optimization of process parameters to maximize
hardness of metal/ceramic nanocomposites produced
by high energy ball milling", Ceram Int, 40(10), pp.
16259{16272 (2014).
22. Keshavarz, A. and To ghi, H. Gene expression
programming models for liquefaction-induced lateral
spreading", Sci Iran, In press (2018). Gene expression
programming models for liquefaction-induced lateral
spreading (doi.org)
23. Bhowmik, S., Paul, A., Panua, R., et al. Arti cial intelligence
based gene expression programming (GEP)
model prediction of Diesel engine performances and
exhaust emissions under Diesosenol fuel strategies",
Fuel, 235, pp. 317{325 (2019).
24. Abdellahi, M., Bahmanpour, M., and Bahmanpour,
M. Laminating; the best way to improve Charpy impact
energy of nanocomposites", Ceram Intl, 40(10),
pp. 16115{16125 (2014).
25. Hosseini, S.S.S. and Gandomi, A.H. Short-term load
forecasting of power systems by gene expression programming",
Neural Comput Appl, 21(2), pp. 377{389
(2012).
26. Liu, L.-W. and Wang, Y.-M. Modelling reservoir
turbidity using landsat 8 satellite imagery by gene expression
programming", Water, 11(7), p. 1479 (2019).
27. Abdellahi, M., Karafshani, M.K., and Rizi, A.S.
Modeling e ect of SiO2 nanoparticles on the mechanical
properties of the concretes", Journal of Building
Pathology and Rehabilitation, 2(1), p. 8 (2017).
28. Ferreira, C. Gene expression programming in problem
solving. Soft computing and industry: Springer, pp.
635{653 (2002).
29. Aytek, A. and Alp, M. An application of arti cial
intelligence for rainfall-runo modeling", J Earth Syst
Sci, 117(2), pp. 145{155 (2008).
30. Baykasoglu, A., Gullu, H., C anakc, H., et al. Prediction
of compressive and tensile strength of limestone
via genetic programming", Expert Syst Appl, 35(1{2),
pp. 111{123 (2008).
31. Armaghani, D.J., Safari, V., Fahimifar, A., et al. Uniaxial
compressive strength prediction through a new
technique based on gene expression programming",
Neural Comput Appl, 30(11), pp. 3523{3532 (2018).
32. Faradonbeh, R.S. and Monjezi, M. Prediction and
minimization of blast-induced ground vibration using
two robust meta-heuristic algorithms", Eng Comput-
Germany, 33(4), pp. 835{851 (2017).
33. Mousavi, S.M., Aminian, P., Gandomi, A.H., et al. A
new predictive model for compressive strength of HPC
using gene expression programming", Adv Eng Softw,
45(1), pp. 105{114 (2012).
R. Sattari and G.R. Khayati/Scientia Iranica, Transactions F: Nanotechnology 27 (2020) 3399{3411 3411
34. Tiryaki, B. Predicting intact rock strength for mechanical
excavation using multivariate statistics, arti
cial neural networks, and regression trees", Eng
Geology, 99(1{2), pp. 51{60 (2008).
35. Sayadi, A.R., Khalesi, M.R., and Borji, M.K. A
parametric cost model for mineral grinding mills",
Miner Eng, 55, pp. 96{102 (2014).
36. Sayadi, A.R., Lashgari, A., and Paraszczak, J.J.
Hard-rock LHD cost estimation using single and
multiple regressions based on principal component
analysis", Tunn Undergr sp Tech, 27(1), pp. 133{141
(2012).
37. Kaiser, H.F. An index of factorial simplicity", Psychometrika,
39(1), pp. 31{36 (1974).
38. Al-Mosawe, A., Kalfat, R., and Al-Mahaidi, R.
Strength of CFRP-steel double strap joints under
impact loads using genetic programming", Compos
Struct, 160, pp. 1205{1211 (2017).
39. Manouchehrian, A., Sharifzadeh, M., and Moghadam,
R.H. Application of arti cial neural networks and
multivariate statistics to estimate UCS using textural
characteristics", Int. J. Min. Sci. Technol, 22(2), pp.
229{236 (2012).
40. Hamby, D. A review of techniques for parameter
sensitivity analysis of environmental models", Environ
Monit Assess, 32(2), pp. 135{154 (1994).